Un esempio di ammasso globulare...

Ammassi Globulari

Spesso immaginiamo il cosmo come un luogo densissimo di corpi celesti. In realtà abbiamo scoperto che si tratta di un deserto vuoto e freddo, dove la densità di corpi celesti è minima. Esistono degli ammassi di stelle dove, però, questa regola non vale : gli ammassi globulari. Seguici su Eagle sera per saperne di più. 




Amassi Globulari

Un ammasso globulare (detto anche ammasso chiuso o ammasso di alone) è un insieme sferoidale di stelle che orbita come un satellite intorno al centro di una galassia. Gli ammassi globulari sono sorretti al loro interno da una forte gravità, che dà loro il tipico aspetto sferico e mantiene al loro centro una densità di stelle relativamente molto elevata. Gli ammassi globulari sono in genere composti da centinaia di migliaia di stelle vecchie, le stesse che compongono il nucleo, noto come bulge, di una galassia spirale, ma confinate in pochi parsec cubici. Gli ammassi globulari sono piuttosto numerosi: se ne conoscono 158 attorno alla Via Lattea, con forse altri 10-20 da scoprire, essendo nascosti all'osservazione da Terra dalle polveri interstellari che oscurano la vista in direzione del centro galattico; pare che le galassie più grandi possano averne un numero nettamente superiore (la Galassia di Andromeda potrebbe averne fino a 500). Alcune galassie ellittiche giganti (come M87) ne contano fino a 10.000. Questi oggetti sono considerati parte dell'alone delle galassie, orbitando attorno ai centri di queste a distanze fino a 40 Kiloparsec (circa 130.000 anni luce) o più. Ogni galassia del Gruppo Locale con massa sufficientemente grande ha associato un suo gruppo di ammassi globulari, mentre ogni grande galassia possiede un sistema esteso di questi oggetti. La Galassia Nana Ellittica del Sagittario e quella del Cane Maggiore sono in via di collisione ed assorbimento con la Via Lattea, donando così alla nostra Galassia i loro ammassi globulari associati (come Palomar 12). Ciò dimostra come molti degli ammassi globulari osservati nella nostra e in altre galassie possano essere appartenuti ad altre galassie "cannibalizzate". L'alta densità stellare degli ammassi globulari fa sì che le interazioni tra stelle e le collisioni mancate siano relativamente frequenti. Il loro centro presenta caratteristiche ideali per la formazione di oggetti peculiari, come le stelle vagabonde blu (ritenute il risultato della fusione di due stelle) o pulsar veloci con periodi di millisecondi, tutti fenomeni presumibilmente risultanti dall'interazione tra più stelle. Gli ammassi globulari sono distribuiti lungo il piano galattico, concentrandosi, con pochissime eccezioni, solo in prossimità del centro galattico, in particolare in quell'area di cielo compresa tra le costellazioni di Ofiuco, Scorpione e Sagittario; degli oltre 150 ammassi globulari riconosciuti come appartenenti alla Via Lattea,[2][10] ben 79 sono visibili entro i confini di queste tre costellazioni.[10][11] All'osservazione amatoriale si distinguono dagli ammassi aperti sia per la morfologia, essendo questi ultimi molto meno densi, sia per il colore delle componenti, essendo gli ammassi aperti composti nella gran parte dei casi da stelle giovani e blu. Alcuni ammassi globulari sono visibili ad occhio nudo e si presentano come delle piccole macchie chiare e dai contorni sfumati. I più luminosi sono Omega Centauri e 47 Tucanae, visibili solo dall'emisfero australe, e, da quello boreale, l'Ammasso Globulare di Ercole. Omega Centauri e 47 Tucanae sono così brillanti (quarta e quinta magnitudine rispettivamente), da aver ricevuto una sigla identificativa equivalente a quella di una stella. Altri ammassi globulari visibili ad occhio nudo in condizioni osservative eccellenti anche dalle latitudini temperate boreali sono M4 nello Scorpione ed M22 nel Sagittario. Un buon binocolo consente di scorgere numerosi ammassi globulari, ma la loro natura stellare non viene svelata, mostrandosi ancora come delle macchie chiare, simili a stelle sfocate. Per risolvere almeno le stelle periferiche occorrono strumenti come telescopi amatoriali non inferiori ai 114-150mm di apertura, a causa della debolezza delle componenti stellari, che spesso sono di decima e undicesima magnitudine. Il periodo più adatto per l'osservazione di questi oggetti cade nei mesi che nell'emisfero boreale equivalgono alla stagione estiva, in particolare il mese di luglio; le località ideali per la loro osservazione tuttavia ricadono nell'emisfero australe, e in particolare nella sua fascia tropicale, per varie ragioni: innanzitutto, la maggior parte degli ammassi globulari si trovano a sud dell'equatore celeste, poiché lo stesso centro galattico si trova ad una declinazione di -29°; in secondo luogo, perché ammassi globulari come 47 Tucanae si trovano a declinazioni molto meridionali, e possono essere ben osservati solo a partire dalle zone vicine all'equatore, mentre l'ammasso globulare più settentrionale, NGC 6229, può essere osservato anche da quasi tutta la fascia temperata dell'emisfero australe. M22 è stato il primo ammasso globulare scoperto, identificato nel 1665 dall'astronomo tedesco Johann Abraham Ihle. A causa della modesta apertura dei primi telescopi, fino all'osservazione di M4 da parte di Charles Messier non era stato possibile risolvere le singole stelle di un ammasso globulare. I primi otto ammassi scoperti sono elencati nella tabella; successivamente, il Lacaille aggiungerà 47 Tucanae, NGC 4833, M55, M69, e NGC 6397 nel suo catalogo del 1751-52. William Herschel iniziò una campagna di osservazione nel 1782, usando telescopi con apertura maggiore di quelli fino ad allora in uso, che furono in grado di risolvere tutti i 33 ammassi globulari allora conosciuti. Oltre a questi, ne scoprì 37 di nuovi. Nel suo secondo catalogo degli oggetti del profondo cielo del 1789 fu il primo ad usare il termine ammasso globulare per la descrizione di questi oggetti. Il numero di ammassi identificati continuò ad aumentare, al punto che se ne contavano 83 già nel 1915, 93 nel 1930 e 97 nel 1947; il numero di ammassi scoperti nella Via Lattea è 158, su un totale stimato di 180 ± 20. Gli ammassi che non sono ancora stati scoperti potrebbero, secondo gli studiosi, nascondersi dietro polveri e gas. Harlow Shapley iniziò nel 1914 una serie di studi degli ammassi globulari, pubblicati in 40 articoli scientifici. Shapley esaminò le variabili cefeidi negli ammassi e utilizzò la relazione tra il periodo e la luminosità per stimarne le distanze. Shapley sfruttò inoltre la distribuzione asimmetrica degli ammassi per determinare le dimensioni della Via Lattea. Ipotizzando una distribuzione approssimativamente sferica degli ammassi attorno al centro galattico, stimò la distanza del Sole da quest'ultimo. Nonostante la distanza calcolata si fosse in seguito rivelata eccessivamente elevata (ma nello stesso ordine di grandezza del valore successivamente accettato dagli scienziati), riuscì a dimostrare che la Galassia era molto più estesa rispetto a ciò che si pensava fino a quel momento. Gli errori nella stima di Shapley furono causati dalle polveri che diminuiscono la luce proveniente dagli ammassi, facendoli sembrare più distanti di quanto lo siano in realtà. Tra gli altri risultati ottenuti da queste stime, venne scoperto che il Sole era relativamente distante dal centro della Galassia, contrariamente a quello che si era dedotto in precedenza dalla distribuzione delle stelle. Infatti queste ultime giacciono sul disco galattico e sono spesso oscurate da polveri, mentre gli ammassi globulari si trovano fuori dal disco e possono essere osservati a distanze molto superiori. Shapley venne in seguito assistito nei suoi studi sugli ammassi da Henrietta Swope e Helen Battles Sawyer. Dal 1927 al 1929 Shapley e Sawyer iniziarono a catalogare gli ammassi in base al grado di concentrazione rispetto al loro nucleo. Gli ammassi vennero catalogati in dodici classi, dove la Classe I era costituita da quelli più concentrati e la Classe XII quelli meno. Questa suddivisione è nota come la Classe di concentrazione di Shapley/Sawyer (a volte viene indicata con numeri normali invece che numeri romani, ad es. Classe 5). Gli ammassi globulari sono composti generalmente da centinaia di migliaia di stelle vecchie a bassa metallicità, di tipo simile a quelle presenti nel bulge di una galassia a spirale; queste stelle sono confinate in un volume di qualche parsec cubico, e non sono in genere circondate da gas e polveri. La densità delle stelle è molto elevata (in media, circa 0,4 stelle per parsec cubico, aumentando a 100 o 1000 stelle per parsec cubico nel nucleo dell'ammasso), e non sembrerebbero certo ambienti favorevoli per la sopravvivenza di un sistema planetario: le orbite planetarie infatti sono dinamicamente instabili nelle vicinanze dei nuclei di ammassi densi a causa delle perturbazioni gravitazionali generate da stelle che transitano nelle vicinanze. Un pianeta in orbita ad una distanza di una UA da una stella che si trova all'interno del nucleo di un ammasso come 47 Tucanae sopravviverebbe solo qualche centinaio di milioni di anni. Tuttavia è stato trovato un sistema planetario in orbita attorno ad una pulsar, catalogata come PSR B1620-26, che appartiene all'ammasso globulare M4. Con qualche eccezione, ogni ammasso possiede un'età ben definita; la maggior parte delle stelle appartenenti ad un ammasso infatti sono nella stessa fase evolutiva, e probabilmente quindi si sono formate nella stessa epoca. Tutti gli ammassi conosciuti non possiedono nuove stelle in formazione; regioni molto ampie di formazione stellare note col nome di super ammassi stellari, come Westerlund 1 nella Via Lattea, potrebbero essere i precursori degli ammassi globulari. Alcuni ammassi, come Omega Centauri nella Via Lattea e Mayall II nella Galassia di Andromeda, sono straordinariamente massicci (diversi milioni di masse solari) e contengono popolazioni diverse di stelle; entrambi possono essere considerati la prova che i super ammassi stellari sono in realtà i nuclei di galassie nane che sono state inglobate da galassie più grandi. Alcuni ammassi globulari (come M15) hanno nuclei estremamente massicci che potrebbero ospitare persino buchi neri, anche se dalle simulazioni non possono essere escluse concentrazioni di stelle di neutroni o nane bianche particolarmente grandi. Gli ammassi globulari sono normalmente costituiti da stelle di popolazione II con bassa metallicità, a differenza delle stelle di popolazione I con metallicità elevata come il Sole (in astronomia i metalli sono tutti gli elementi più pesanti dell'elio, dunque anche quelli che in chimica non sono considerati tali, come il carbonio). L'astronomo olandese Pieter Oosterhoff notò che sembrano esserci due popolazioni di ammassi globulari, che divennero note come gruppi di Oosterhoff; il secondo gruppo possiede delle stelle variabili di tipo RR Lyrae dal periodo più breve. Entrambi i gruppi hanno deboli linee spettrali relative agli elementi metallici, ma quelle del tipo I (OoI) non sono così deboli come quelle del tipo II (OoII); per questo il tipo I è detto ricco in metalli e il tipo II povero in metalli. Queste due popolazioni sono state osservate in molte galassie, specialmente nelle galassie ellittiche massicce; entrambi i gruppi hanno età simili (quasi quanto l'età dell'Universo stesso), ma differiscono nell'abbondanza dei metalli. Sono state formulate molte ipotesi per spiegare queste sottopopolazioni, tra cui fusioni di galassie ricche di gas interstellare, accrescimento di galassie nane e intensi e ripetuti fenomeni di formazione stellare. Nella Via Lattea gli ammassi poveri di metalli sono associati con l'alone galattico e quelli ricchi di metalli con il bulge galattico. Nella Via Lattea è stato scoperto che la gran parte degli ammassi globulari a bassa metallicità sono allineati su un piano giacente nella parte esterna dell'alone galattico. Questo risultato rafforza la teoria secondo cui gli ammassi di tipo II vennero catturati da un galassia satellite "fagocitata", invece che essere i membri più antichi tra gli ammassi della Via Lattea. Le differenze tra i due tipi di ammassi potrebbero quindi essere spiegate con l'intervallo di tempo trascorso tra la formazione delle due galassie e quella dei loro ammassi.

Approfondiamo: metallicità

In astronomia, la metallicità di un oggetto è la quantità adimensionale indicante la frazione in massa di elementi di materia diversi da idrogeno o elio. Tutti gli elementi più pesanti sono definiti in astronomia metalli. La metallicità di un oggetto può fornire indicazioni sulla sua età. Secondo le attuali teorie cosmologiche, quando l'universo si formò, era composto quasi completamente da idrogeno ed elio, e così le stelle più vecchie (quelle di popolazione II e di popolazione III) hanno metallicità molto basse. Crescendo l'età dell'universo cresce anche il contenuto di metalli, a causa della nucleosintesi stellare e dell'arricchimento di metalli che il mezzo interstellare subisce attraverso le nebulose planetarie e le supernovae.  La metallicità del Sole è circa 1,6% della massa. Per le altre stelle della galassia, la metallicità è espressa come [Fe/H], che rappresenta il logaritmo del rapporto dell'abbondanza di ferro della stella rispetto a quella del Sole. La metallicità di una stella si misura dallo spettro di assorbimento degli elementi contenuti nell'atmosfera stellare. Esistono vari formalismi matematici per esprimere la metallicità:

  • La metallicità in funzione della massa
X --> Funzione della massa di HY --> Funzione della massa di HeZ --> Funzione della massa dei "metalli" Dove si verifica che: X+Y+Z=1 Composizione primordiale : X=0,76 Y=0,24 Z=0,00Composizione solare: X=0,70 Y=0,28 Z=0,02Si noti che la metallicità si può anche esprimere in funzione del numero di atomi, nel quale caso si ottengono valori maggiori per l'idrogeno e minori per l'elio e i metalli.
  • Indice di metallicità

Di solito il valore della metallicità si ottiene utilizzando come misura primaria l'abbondanza di elementi metallici del Sole. Tale misura non è di carattere assoluta ma relativa. Le linee di assorbimento che si osservano sono quelle dell'idrogeno e del ferro. La metallicità del Sole è di un 1,6% della massa. L'indice di metallicità si ottiene dal rapporto Fe/H che rappresenta il logaritmo del quoziente tra l'abbondanza di metalli nella stella e l'abbondanza solare. Questa è la sua formula: 

Barra delle equazioni per i lettori più curiosi

dove ab è il valore dell'abbondanza di ferro (Fe) o idrogeno (H) a seconda del caso. L'indice di metallicità del Sole sarà Fe/H=0 Gli oggetti con meno metalli del Sole possiedono un indice di metallicità negativo mentre gli altri oggetti ricchi in metalli possiedono un indice positivo. Poiché la scala è logaritmica, una metallicità di "-1" equivale a una abbondanza dieci volte minore a quella del Sole, "-2" ad una abbondanza cento volte minore a quella solare e così via. Analogamente, un indice di valore "+1" corrisponde ad una abbondanza dieci volte maggiore, "+2" cento volte maggiore e così via.

Nella galassia, la metallicità è più alta nel centro e più bassa all'esterno. Questo perché verso il centro della galassia ci sono molte più stelle, e durante la propria esistenza più metalli sono ritornati al mezzo interstellare.
In modo simile, le galassie più grandi tendono ad avere metallicità più alte. Nel caso delle Nubi di Magellano, due piccole galassie irregolari che orbitano attorno alla Via Lattea, la Grande Nube di Magellano ha una metallicità di circa il 40% del valore galattico, mentre la Piccola Nube di Magellano ha una metallicità approssimativa del 10%. 

Glossario: Galassie

Una galassia è un grande insieme di stelle, sistemi, ammassi ed associazioni stellari, gas e polveri (che formano il mezzo interstellare), legati dalla reciproca forza di gravità. 

Gli ammassi globulari hanno una densità stellare molto alta, quindi le stelle interagiscono in modo significativo e a volte possono accadere delle mancate collisioni. A causa di questi fenomeni, negli ammassi globulari sono comuni tipi di stelle come le cosiddette vagabonde blu, le pulsar millisecondo e le stelle binarie a raggi X di piccola massa; le stelle vagabonde blu sono formate dalla fusione di due stelle, forse a causa di un incontro in un sistema binario, e hanno temperature maggiori rispetto alle stelle dell'ammasso che possiedono la stessa luminosità, quindi differiscono dalle stelle della sequenza principale. Dal 1970 gli astronomi hanno cercato dei buchi neri negli ammassi globulari; tuttavia solo tramite il Telescopio Spaziale Hubble sono riusciti ad avere conferme. In base a programmi indipendenti di osservazione tramite Hubble, è stato suggerito che nel nucleo dell'ammasso M15 potrebbe essere presente un buco nero con massa pari a 4000 masse solari, mentre nell'ammasso Mayall II nella Galassia di Andromeda potrebbe essercene uno grande 20.000 masse solari: infatti le emissioni di raggi X e radio provenienti da Mayall II sono paragonabili a quelle emesse da un buco nero di medie dimensioni. Questi buchi neri sono interessanti perché sarebbero i primi scoperti ad avere una massa compresa tra quelli di massa stellare e i buchi neri supermassicci presenti nei nuclei di alcune galassie. La massa dei buchi neri di medie dimensioni sarebbe proporzionata alla massa dell'ammasso ospitante. L'idea dei buchi neri di massa intermedia ha tuttavia subìto delle critiche. Gli oggetti più densi di un ammasso globulare tendono infatti a migrare verso il centro dell'ammasso grazie ad un fenomeno noto come segregazione di massa. Si tratterebbe dunque di nane bianche o di stelle di neutroni in un campo stellare molto vecchio come quello degli ammassi globulari. Come descritto in due articoli da Holger Baumgardt e dai suoi collaboratori, questo rapporto di "massa-luce" potrebbe verificarsi anche verso il centro sia dell'ammasso M15 che di Mayall II, anche ipotizzando che non vi siano buchi neri. 

Il diagramma di Hertzsprung-Russell (diagramma H-R) è un grafico che raffigura la magnitudine assoluta delle stelle con il loro indice di colore; quest'ultimo è la differenza tra la magnitudine della stella in luce blu (B) e in luce visuale (verde-gialla, V). Valori altamente positivi di questo indice indicano una stella rossa con una temperatura superficiale relativamente bassa, mentre valori molto negativi indicano una stella blu con temperatura elevata. Quando si tracciano le stelle vicine al Sole nel diagramma HR, molte di esse giacciono nelle vicinanze di una curva chiamata sequenza principale, caratterizzata da una proporzionalità tra la loro magnitudine assoluta e la loro temperatura; il diagramma HR include anche le stelle che sono nelle fasi avanzate della loro evoluzione e si sono spostate dalla sequenza principale verso alte regioni del diagramma. Essendo tutte le stelle di un ammasso globulare alla stessa distanza (approssimativamente) dalla Terra, la differenza tra le magnitudini assolute e quelle apparenti delle stelle sarà costante. Le stelle dell'ammasso appartenenti alla sequenza principale saranno distribuite lungo una linea in modo non molto diverso da stelle simili che si trovano nelle vicinanze del sistema solare. (l'accuratezza di questa ipotesi è confermata dai risultati ottenuti comparando le magnitudini di variabili a breve periodo come le stelle RR Lyrae e le variabili cefeidi con quelle nell'ammasso). Facendo corrispondere queste curve sul diagramma HR, può essere determinata la magnitudine assoluta delle stelle appartenenti alla sequenza principale presenti nell'ammasso. La differenza tra la magnitudine assoluta e apparente permette inoltre di stimare la loro distanza. Quando le stelle di un particolare ammasso sono rappresentate sul diagramma HR, quasi tutte si trovano su una curva ben definita. Nel diagramma delle stelle vicine al Sole invece sono presenti stelle di diverse età e origini. La forma della curva di un ammasso è caratteristica di un raggruppamento di stelle che si sono formate approssimativamente nella stessa epoca e a partire dagli stessi materiali, con l'unica differenza della loro massa iniziale. Siccome la posizione di ogni stella sul diagramma varia con la sua età, la forma della curva dell'ammasso può essere usata per misurare l'età complessiva dell'ammasso di stelle. Le stelle della sequenza principale più massicce presenti in un ammasso sono quelle che hanno anche la magnitudine assoluta più elevata, e queste saranno le prime ad evolvere nello stadio di giganti; man mano che l'ammasso invecchia, anche le stelle con massa inferiore entreranno nella fase di giganti. Quindi, controllando le stelle che stanno entrando nella fase di giganti, si può stimare l'età dell'ammasso. Questo fenomeno forma un "ginocchio" nel diagramma HR, piegando la parte superiore destra dalla linea della sequenza principale; la magnitudine assoluta in questo punto della curva è direttamente legata all'età dell'ammasso, quindi si può tracciare una scala di età su un asse parallelo a quello della magnitudine. Inoltre gli ammassi possono essere datati misurando le temperature delle nane bianche più fredde. I risultati tipici per gli ammassi globulari forniscono età attorno ai 12,7 miliardi di anni, a differenza degli ammassi aperti che hanno un'età di qualche decina di milioni di anni. Le età degli ammassi pongono un limite all'età dell'Universo stesso. Il limite inferiore è stato un vincolo fondamentale nella cosmologia; durante i primi anni novanta gli astronomi si trovavano di fronte a stime d'età degli ammassi globulari che erano superiori a quelle permesse dai modelli cosmologici di allora. Dei miglioramenti nelle misurazioni dei parametri cosmologici attraverso osservazioni del cielo profondo e per mezzo di satelliti come il COBE hanno risolto questo problema. Studi evoluzionistici degli ammassi globulari possono essere utilizzati per determinare cambiamenti dovuti alla composizione iniziale dei gas e delle polveri che lo hanno formato, ovvero i cambiamenti nei percorsi evolutivi dovuti alla presenza di elementi pesanti (in astronomia, gli elementi pesanti sono considerati tutti gli elementi più pesanti dell'elio). I dati ottenuti dagli studi degli ammassi globulari sono stati usati anche per studiare l'evoluzione dell'intera Via Lattea. 

Approfondiamo: la sequenza principale

La sequenza principale è una continua ed evidente banda di stelle disposta in senso pressoché diagonale nel diagramma Hertzsprung-Russell, una rappresentazione grafica che mette in relazione la temperatura effettiva (riportata in ascissa) e la luminosità (riportata in ordinata) delle stelle. Le stelle che si addensano in questa fascia sono dette stelle di sequenza principale o "stelle nane", anche se quest'ultima designazione è caduta in disuso. Dopo essersi formata in una nube molecolare, una stella genera energia nel suo nucleo tramite le reazioni nucleari di fusione dell'idrogeno in elio. Durante questa lunga fase del suo ciclo vitale, la stella si pone all'interno della sequenza principale in una posizione che è determinata principalmente dalla sua massa e da altri fattori quali la sua composizione chimica. Tutte le stelle di sequenza principale si trovano in uno stato di equilibrio idrostatico in cui la pressione termica e, nelle stelle massicce, la pressione di radiazione 3 del nucleo, dirette verso l'esterno, contrastano il naturale collasso gravitazionale degli strati della stella, diretto verso l'interno. A mantenere questo equilibrio contribuisce la forte dipendenza del tasso di creazione dell'energia dalla temperatura e dalla densità. L'energia prodotta nel nucleo viene trasportata attraverso gli strati superiori tramite irraggiamento o convezione, a seconda del gradiente di temperatura e dell'opacità; alla fine raggiunge la fotosfera, da cui è irradiata nello spazio sotto forma di energia radiante. Le stelle di sequenza principale con una massa superiore alle 1,5 masse solari (M☉) possiedono un nucleo convettivo, mentre fra il nucleo e la superficie l'energia viene trasportata per irraggiamento. Nelle stelle di massa compresa fra 1,5 M☉ e 0,5 M☉ avviene il contrario: esse possiedono un nucleo in cui la trasmissione dell'energia avviene per irraggiamento, mentre la convezione si innesca al di sopra del nucleo, in prossimità della superficie. Infine, le stelle di sequenza principale con massa inferiore a 0,5 M☉ hanno un interno completamente convettivo. Più la stella è massiccia, minore è il tempo in cui permane nella sequenza principale; questo perché, all'incrementare della massa, è necessario che i processi nucleari avvengano ad un ritmo superiore (e quindi anche più rapidamente) per contrastare la gravità della maggiore massa ed evitare il collasso. Dopo che il quantitativo di idrogeno nel nucleo si è completamente convertito in elio, la stella esce dalla sequenza principale, seguendo differenti "tragitti" a seconda della massa: le stelle con meno di 0,23 M☉ divengono direttamente delle nane bianche, mentre le stelle con masse maggiori passano per la fase di stella gigante o, a seconda della massa, supergigante, per poi arrivare, previa fenomeni più o meno violenti (come l'esplosione di una supernova), alla fase finale di stella degenere. La sequenza principale è talvolta suddivisa in due parti, una superiore e una inferiore, sulla base del processo prevalentemente utilizzato dalla stella nel produrre energia. La parte bassa della sequenza è occupata dalle stelle aventi una massa inferiore alle 1,5 M☉, le quali fondono l'idrogeno in elio sfruttando una sequenza di reazioni che prende il nome di catena protone-protone. Al di sopra di questa massa, nella sequenza principale superiore, la fusione dell'idrogeno in elio avviene sfruttando come catalizzatori gli atomi di carbonio, azoto e ossigeno, in un ciclo di reazioni noto come ciclo CNO. Agli inizi del XX secolo erano già disponibili numerose informazioni sulle proprietà delle stelle e sulle loro distanze dalla Terra. La scoperta che lo spettro di ogni stella presentava delle caratteristiche che permettevano di distinguere tra una stella e l'altra permise di sviluppare diversi sistemi classificativi; tra questi uno dei più importanti fu quello implementato da Annie Jump Cannon ed Edward Charles Pickering presso l'Harvard College Observatory che divenne noto come schema di Harvard, in seguito alla sua pubblicazione negli Harvard Annals nel 1901. A Potsdam, nel 1906, l'astronomo danese Ejnar Hertzsprung notò che le stelle il cui colore tendeva maggiormente al rosso (classificate nei tipi K ed M dello schema di Harvard) potevano essere suddivise in due gruppi a seconda che queste fossero più o meno luminose del Sole; per distinguere i due gruppi, diede il nome di "giganti" alle più brillanti e "nane" alle meno luminose. L'anno successivo iniziò a studiare gli ammassi stellari (gruppi di stelle poste approssimativamente alla stessa distanza), pubblicando i primi grafici che mettevano a confronto il colore e la luminosità delle stelle che li costituivano; in questi grafici compariva un'evidente banda continua di stelle, cui Hertzsprung diede il nome di "sequenza principale". 7 Una simile linea di ricerca era perseguita presso l'Università di Princeton da Henry Norris Russell, che studiava le relazioni tra la classe spettrale di una stella e la sua luminosità effettiva considerando la distanza (ovvero, la magnitudine assoluta). A tale proposito si servì di un certo numero di stelle che possedevano dei valori affidabili della parallasse e che erano state categorizzate secondo lo schema di Harvard. Quando realizzò una rappresentazione grafica dei tipi spettrali di queste stelle raffrontati con la loro magnitudine assoluta, Russell scoprì che le "stelle nane" individuate da Hertzsprung seguivano una relazione distinta dagli altri tipi; questo consentì di predire la reale luminosità della stella con una ragionevole accuratezza. Le stelle rosse di sequenza principale osservate da Hertzsprung rispettavano la relazione spettro-luminosità scoperta da Russell. Tuttavia le giganti erano molto più luminose delle stelle nane e quindi non rispettavano tale relazione. Russell ipotizzò che le stelle giganti avessero una bassa densità o una grande superficie radiante, mentre il contrario era vero per le stelle nane. Nel 1933 Bengt Strömgren coniò il termine diagramma Hertzsprung-Russell per denotare il diagramma spettro-luminosità. Questo nome derivava dal fatto che Hertzsprung e Russell avevano compiuto ricerche parallele sullo stesso problema nei primi anni del Novecento. I modelli di evoluzione stellare proposti intorno agli anni trenta del novecento prevedevano che, per le stelle di composizione chimica simile, vi fosse una relazione fra la massa stellare, la sua luminosità e il suo raggio. Questa relazione venne enunciata nel teorema Vogt-Russell, così chiamato in onore dei suoi scopritori Heinrich Vogt e Henry Norris Russell. Tale teorema afferma che una volta che sia nota la composizione chimica di una stella e la sua posizione nella sequenza principale è possibile ricavare il raggio e la massa della stella (tuttavia, fu scoperto successivamente che il teorema non si applica alle stelle che hanno composizione chimica non uniforme) . Uno schema perfezionato di classificazione stellare fu pubblicato nel 1943 da W. W. Morgan and P. C. Keenan. La classificazione MK assegna ad ogni stella una classe spettrale (basata sullo schema di Harvard) e una classe di luminosità. Lo schema di Harvard assegnava a ogni stella una lettera dell'alfabeto sulla base della forza delle linee spettrali dell'idrogeno che lo spettro della stella presentava. Ciò era stato fatto quando ancora la relazione fra lo spettro e la temperatura non era nota. Quando le stelle furono ordinate per temperatura e quando alcuni doppioni fra le classi furono rimossi, le classi spettrali furono ordinate secondo una temperatura decrescente a formare la sequenza O, B, A, F, G, K e M (In lingua inglese è stata coniata una frase per ricordarsi facilmente questa scala: "Oh Be A Fine Girl/Guy, Kiss Me"; Oh, sii una ragazza/un ragazzo gentile, baciami). Le classi O e B corrispondevano ai colori blu e azzurri, mentre le classi K e M ai colori arancio-rossi. Le classi intermedie ai colori bianco (classe A) e giallo (classe G), mentre la classe F presentava un colore intermedio fra i due. Le classi di luminosità variavano da I fino a V, in ordine di luminosità decrescente. Le stelle di luminosità V corrispondevano a quelle di sequenza principale . Importante è il concetto di formazione stellare. La locuzione formazione stellare identifica il processo e la disciplina che studia le modalità mediante le quali ha origine una stella. Quale branca dell'astronomia, la formazione stellare studia anche le caratteristiche del mezzo interstellare e delle nubi interstellari in quanto precursori, così come gli oggetti stellari giovani e il processo di formazione planetaria in quanto immediati prodotti. Nonostante le idee che ne stanno alla base risalgano già all'epoca della rivoluzione scientifica, lo studio della formazione stellare nella sua forma attuale vede la luce solamente tra la fine del XIX e gli inizi del XX secolo, in concomitanza con i numerosi progressi che l'astrofisica teorica compì all'epoca. L'avvento dell'osservazione a più lunghezze d'onda, soprattutto nell'infrarosso, diede i contributi più sostanziali per comprendere i meccanismi che stanno alla base della genesi di una nuova stella. Il modello attualmente più accreditato presso la comunità astronomica, detto modello standard, prevede che una stella nasca a partire dal collasso gravitazionale delle porzioni più dense (dette "nuclei") di una nube molecolare e dal successivo accrescimento dell'embrione stellare, originatosi dal collasso, a partire dai materiali presenti della nube. Tale processo ha una durata che può variare tra alcune centinaia di migliaia e alcuni milioni di anni, a seconda del tasso di accrescimento e della massa che la stella nascitura riesce ad accumulare: si stima che una stella simile al Sole impieghi all'incirca un centinaio di milioni di anni per formarsi completamente, mentre per le stelle più massicce il tempo è notevolmente inferiore, nell'ordine dei 100 000 anni. Il modello spiega bene le modalità che conducono alla nascita delle singole stelle di massa piccola e media (tra 0,08 e 10 volte la massa solare) e trova riscontro anche nella funzione di massa iniziale; risulta più lacunoso invece per quanto riguarda la formazione dei sistemi e degli ammassi stellari e delle stelle massicce. Per tale ragione sono stati sviluppati dei modelli complementari che includono gli effetti delle interazioni tra gli embrioni stellari e l'ambiente in cui si formano ed eventuali altri embrioni nelle vicinanze, importanti ai fini delle stesse dinamiche interne dei sistemi e soprattutto della massa che le stelle nasciture riusciranno a raggiungere. Le fasi successive della vita della stella, a partire dalla sequenza principale, sono di competenza dell'evoluzione stellare. Lo studio della formazione stellare, nella sua forma moderna, è databile tra il XIX e il XX secolo, anche se le idee che ne stanno alla base affondano le loro radici nel periodo rinascimentale quando, poste le fondamenta per la rivoluzione scientifica, fu messa in discussione la visione geocentrica del cosmo a vantaggio di quella eliocentrica; grazie al contributo di grandi personalità come Copernico e Keplero e, più tardi, Galileo, lo studio dell'universo divenne materia di studio non più teologica ma scientifica. Le teorie sulla formazione delle stelle vedono il loro primo abbozzo nelle ipotesi formulate per spiegare la nascita del sistema solare. Uno dei primi fu Cartesio, che nel 1644 propose una teoria "scientifica" basata sull'ipotesi della presenza di vortici primordiali di materia in contrazione caratterizzati da masse e dimensioni differenti; da uno dei più grandi ebbe origine il Sole, mentre i pianeti si formarono dai vortici più piccoli che a causa della rotazione globale si misero in orbita intorno ad esso: 6 si trattava dell'abbozzo di quella che sarà la cosiddetta ipotesi della nebulosa, formulata nel 1734 da Emanuel Swedenborg, successivamente ripresa da Kant (1755) e perfezionata da Laplace (1796), il cui principio sta tutt'oggi, seppur con sostanziali modifiche e migliorie, alla base di quello che secoli dopo e nonostante alterne vicende sarà definito modello standard della formazione stellare. 8 Tale teoria suggerisce che il Sole e i pianeti che lo orbitano abbiano tratto origine tutti da una stessa nebulosa primordiale, la nebulosa solare. La formazione del sistema avrebbe avuto inizio dalla contrazione della nebulosa, che avrebbe determinato un aumento della propria velocità di rotazione, facendo sì che essa assumesse un aspetto discoidale con un maggiore addensamento di materia in corrispondenza del suo centro, da cui sarebbe nato il proto-Sole. Il resto della materia circumsolare si sarebbe dapprima condensato in anelli, da cui poi avrebbero avuto origine i pianeti. Sebbene abbia goduto di gran credito nel XIX secolo, l'ipotesi laplaciana non riusciva a spiegare alcune particolarità riscontrate, prima fra tutte la distribuzione del momento angolare tra Sole e pianeti: i pianeti infatti detengono il 99% del momento angolare, mentre il semplice modello della nebulosa prevede una più "equa" distribuzione del momento angolare tra Sole e pianeti; 8 per questa ragione tale modello è stato largamente accantonato all'inizio del XX secolo. La caduta del modello di Laplace ha stimolato gli astronomi a ricercare delle valide alternative; si trattava però spesso di modelli teorici che non trovavano alcun riscontro osservativo. L'individuazione poi, nel corso degli ultimi decenni del Novecento, di strutture analoghe al disco protosolare attorno ad oggetti stellari giovani portò alla rivalutazione dell'idea laplaciana. Un contributo importante alla comprensione di cosa desse inizio alla formazione di una stella fu dato dall'astrofisico britannico James Jeans agli inizi del XX secolo. 1 Jeans ipotizzò che all'interno di una vasta nube di gas interstellare la gravità fosse perfettamente bilanciata dalla pressione generata dal calore interno della nube, ma scoprì che si trattava di un equilibrio assai instabile, tant'è che facilmente poteva rompersi a favore della gravità, facendo collassare la nube e dando inizio alla formazione di una stella. L'ipotesi di Jeans trovò ampio riscontro quando, a partire dagli anni quaranta, furono individuate in alcune nebulose oscure delle costellazioni del Toro e dell'Auriga alcune stelle che sembravano in rapporto con le nubi all'interno delle quali erano state individuate; esse inoltre erano di un tipo spettrale caratteristico delle stelle più fredde e meno massicce, mostravano nei loro spettri righe di emissione ed avevano una notevole variabilità. L'astronomo sovietico Viktor Ambarcumjan suggerì, verso la fine degli anni quaranta, che si trattasse di oggetti molto giovani; nello stesso periodo Bart Bok studiava alcuni piccoli aggregati di polveri oscure, 12 oggi noti come globuli di Bok, e ipotizzò che questi, assieme alle nubi oscure più grandi, fossero sede di attiva formazione stellare, tuttavia fu necessario attendere lo sviluppo dell'astronomia dell'infrarosso, negli anni sessanta, prima che queste teorie venissero confermate dalle osservazioni. È stato proprio l'avvento dell'osservazione infrarossa a incentivare lo studio della formazione stellare: Mendoza, nel 1966, scoprì che alcune stelle di tipo T Tauri possedevano un importante eccesso di emissione infrarossa, difficilmente imputabile alla sola estinzione (l'assorbimento della luce da parte della materia posta davanti alla sorgente luminosa che si manifesta con un arrossamento della stessa) operata dal mezzo interstellare; tale fenomeno fu interpretato ipotizzando la presenza di strutture di polveri dense attorno a tali astri in grado di assorbire la radiazione delle stelle centrali e di riemetterla sotto forma di radiazione infrarossa. L'ipotesi fu confermata tra la fine degli anni novanta e i primi anni duemila grazie ai dati osservativi ottenuti tramite strumentazioni innovative, come il ben noto telescopio spaziale Hubble, il telescopio spaziale Spitzer e il Very Large Telescope con le sue ottiche adattive, di densi dischi di materia attorno a stelle in fase di formazione o appena formate; l'interferometria ottica ha inoltre permesso di individuarne numerosi esempi e di visualizzare altre strutture legate a stelle in fasi precoci della loro esistenza, quali getti e flussi molecolari. Una stella è fondamentalmente uno sferoide di plasma costituito per la gran parte da idrogeno, dalla cui fusione l'astro ricava l'energia necessaria per contrastare l'altrimenti inevitabile collasso gravitazionale della grande massa di materia che lo compone. Condizione necessaria dunque perché una stella possa formarsi è una fonte di idrogeno, reperibile nel mezzo interstellare (ISM, dall'inglese interstellar medium) presente comunemente all'interno di una galassia. Una tipica galassia spiraliforme, come la Via Lattea, contiene grandi quantità di mezzo interstellare, che si dispone principalmente lungo i bracci che delineano la spirale, ove la gran parte della materia che lo costituisce, qui convogliata a causa del moto di rotazione della galassia, può formare strutture diffuse. La situazione cambia procedendo lungo la sequenza di Hubble, fino ad arrivare alle più esigue quantità di materia presenti nel mezzo interstellare delle galassie ellittiche; conseguentemente, man mano che si riduce la quantità di ISM vien meno la possibilità che si formino strutture nebulari diffuse, a meno che la galassia carente non acquisisca materiale da altre galassie con cui eventualmente interagisce. Il mezzo interstellare è inizialmente piuttosto rarefatto, con una densità compresa tra 0,1 e 1 particella per cm³, ed è composto per circa il 70% in massa da idrogeno, mentre la restante percentuale è in prevalenza elio con tracce di elementi più pesanti, detti genericamente metalli. La dispersione di energia sotto forma di radiazione nell'infrarosso lontano (meccanismo questo assai efficiente) traducendosi in un raffreddamento della nube, 3 fa sì che la materia del mezzo si addensi in nubi distinte, dette genericamente nubi interstellari, classificate in maniera opportuna a seconda dello stato di ionizzazione dell'idrogeno. Le nubi costituite in prevalenza da idrogeno neutro monoatomico sono dette regioni H I (acca primo). Man mano che il raffreddamento prosegue, le nubi divengono sempre più dense; quando la densità raggiunge le 1000 particelle al cm³, la nube diviene opaca alla radiazione ultravioletta galattica. Tale condizione, unita all'intervento dei granuli di polvere interstellare in qualità di catalizzatori, permette agli atomi di idrogeno di combinarsi in molecole biatomiche (H2): si ha così una nube molecolare. I maggiori esemplari di queste strutture, le nubi molecolari giganti, possiedono densità tipiche dell'ordine delle 100 particelle al cm³, diametri di oltre 100 anni luce, masse superiori a 6 milioni di masse solari (M☉) ed una temperatura media, all'interno, di 10 K. Si stima che circa la metà della massa complessiva del mezzo interstellare della nostra galassia sia contenuta in queste formazioni, 25 suddivisa tra circa 6000 nubi ciascuna con più di 100 000 masse solari di materia al proprio interno. 26 La presenza, frequentemente riscontrata, di molecole organiche anche molto complesse, come amminoacidi ed IPA, all'interno di queste formazioni 27 è il risultato di reazioni chimiche tra alcuni elementi (oltre all'idrogeno, carbonio, ossigeno, azoto e zolfo) che si verificano grazie all'apporto energetico fornito dai processi di formazione stellare che hanno luogo al loro interno. Se la quantità di polveri all'interno della nube molecolare è tale da bloccare la radiazione luminosa visibile proveniente dalle regioni retrostanti, essa appare come una nebulosa oscura; tra le nubi oscure si annoverano i già citati globuli di Bok, "piccoli" aggregati di idrogeno molecolare e polveri che si possono formare indipendentemente o in associazione al collasso di nubi molecolari più vaste. I globuli di Bok, così come le nubi oscure, si presentano spesso come delle sagome scure contrastanti con il chiarore diffuso dello sfondo costituito da una nebulosa a emissione o dalle stelle di fondo. Si pensa che un tipico globulo di Bok contenga circa 10 masse solari di materia in una regione di circa un anno luce (a.l.) di diametro, e che da essi abbiano origine sistemi stellari doppi o multipli. Oltre la metà dei globuli di Bok noti contengono al loro interno almeno un oggetto stellare giovane. L'eventuale raggiungimento di densità ancora superiori (~10 000 atomi al cm³) rende le nubi opache anche all'infrarosso, che normalmente è in grado di penetrare le regioni ricche di polveri. Tali nubi, dette nubi oscure all'infrarosso, contengono importanti quantità di materia (da 100 a 100 000 M☉) e costituiscono l'anello di congiunzione evolutivo tra la nube e i nuclei densi che si formano per il collasso e la frammentazione della nube. Le nubi molecolari e oscure costituiscono il luogo d'elezione per la nascita di nuove stelle. L'eventuale presenza di giovani stelle massicce, che con la loro intensa emissione ultravioletta ionizzano l'idrogeno ad H+, trasforma la nube in un particolare tipo di nube a emissione noto come regione H II (acca secondo). Nella nostra Galassia sono note numerose regioni di formazione stellare; le più vicine in assoluto al sistema solare sono il complesso della nube di ρ Ophiuchi (400-450 a.l.) 33 e la Nube del Toro-Auriga (460-470 a.l.), al cui interno stanno avvenendo processi di formazione che riguardano stelle di massa piccola e media, come pure nella ben nota e studiata Nube di Perseo, tuttavia ben più distante delle altre due (980 a.l.). Tra le regioni H II degne di nota spiccano la Nebulosa della Carena, la Nebulosa Aquila e la famosa Nebulosa di Orione, facente parte di un esteso complesso molecolare, che rappresenta la regione più prossima al sistema solare (1300 a.l.) al cui interno si stia verificando la formazione di stelle massicce. Si ipotizza che le nubi da cui nascono le stelle facciano parte del ciclo del mezzo interstellare, ovvero la materia costituente il mezzo interstellare (gas e polveri) passa dalle nubi alle stelle e, al termine della loro esistenza, torna nuovamente a far parte dell'ISM, costituendo la materia prima per una successiva generazione di stelle Nello studio del processo di formazione stellare sono prese in considerazione due diverse scale temporali. Per una stella di massa solare equivale a circa 20 milioni di anni, ma per un astro di 50 masse solari si riduce ad un centinaio di migliaia di anni. La seconda scala temporale è rappresentata dal tempo di accrescimento, ovvero il tempo necessario perché, a un dato tasso di accrescimento, si accumuli una certa massa; esso è direttamente proporzionale alla massa stessa: è intuitivo, infatti, che sia necessario più tempo per raccogliere quantità di materia maggiori. È inoltre inversamente proporzionale alla temperatura del gas, dal momento che l'energia cinetica, e di conseguenza la pressione, aumentano all'incrementare della temperatura, rallentando dunque l'accumulo di materia. Per una stella di massa solare equivale a circa 20 milioni di anni, ma per un astro di 50 masse solari si riduce ad un centinaio di migliaia di anni. La seconda scala temporale è rappresentata dal tempo di accrescimento, ovvero il tempo necessario perché, a un dato tasso di accrescimento, si accumuli una certa massa; esso è direttamente proporzionale alla massa stessa: è intuitivo, infatti, che sia necessario più tempo per raccogliere quantità di materia maggiori. È inoltre inversamente proporzionale alla temperatura del gas, dal momento che l'energia cinetica, e di conseguenza la pressione, aumentano all'incrementare della temperatura, rallentando dunque l'accumulo di materia. I nuclei supercritici continuano a contrarsi lentamente per alcuni milioni di anni a temperatura costante fintantoché l'energia gravitazionale viene dissipata mediante l'irraggiamento di onde radio millimetriche. Il manifestarsi di fenomeni di instabilità provoca un improvviso collasso del frammento, che porta ad un aumento della densità al centro fino a ~3 × 1010 molecole al cm³ e ad un'opacizzazione della nube alla sua stessa radiazione, che provoca un aumento della temperatura (da 10 a 60-100 K) ed un rallentamento del collasso. Il riscaldamento dà luogo a un aumento della frequenza delle onde elettromagnetiche emesse: la nube ora irradia nell'infrarosso lontano, cui essa è trasparente; in questo modo la polvere media un secondo collasso della nube. Si viene a creare a questo punto una configurazione in cui un nucleo centrale idrostatico attrae gravitazionalmente la materia diffusa nelle regioni esterne: è il cosiddetto first hydrostatic core (primo nucleo idrostatico), che continua ad aumentare la sua temperatura in funzione del teorema del viriale e delle onde d'urto causate dal materiale a velocità di caduta libera. Dopo questa fase di accrescimento a partire dall'inviluppo di gas circostante, il nucleo inizia una fase di contrazione quasi statica. Quando la temperatura del nucleo raggiunge circa i 2000 K, l'energia termica dissocia le molecole di H2 in atomi di idrogeno, 47 che subito dopo si ionizzano assieme agli atomi di elio. Questi processi assorbono l'energia liberata dalla contrazione, permettendole di proseguire per periodi di tempo comparabili col periodo del collasso a velocità di caduta libera. Non appena la densità del materiale in caduta raggiunge il valore di 10−8g cm−3, la materia diviene sufficientemente trasparente da permettere alla luce di sfuggire. La combinazione di moti convettivi interni e dell'emissione di radiazioni permette all'embrione stellare di contrarre il proprio raggio. 47 Questa fase continua finché la temperatura dei gas è sufficiente a mantenere una pressione abbastanza elevata da evitare un ulteriore collasso; si raggiunge così un momentaneo equilibrio idrostatico. Quando l'oggetto così formato cessa questa prima fase di accrescimento prende il nome di protostella; l'embrione stellare permane in questa fase per alcune decine di migliaia di anni. In seguito al collasso la protostella deve aumentare la propria massa accumulando gas; ha così inizio una seconda fase di accrescimento che va avanti ad un ritmo di circa 10−6-10−5 M☉ all'anno. L'accrescimento del materiale verso la protostella è mediato da una struttura discoidale, allineata con l'equatore della protostella, che si forma nel momento in cui il moto di rotazione della materia in caduta (inizialmente uguale a quello della nube) viene amplificato a causa della conservazione del momento angolare; tale formazione ha anche il compito di dissipare l'eccesso di momento angolare, che altrimenti causerebbe lo smembramento della protostella. In questa fase si formano inoltre dei flussi molecolari, frutto forse dell'interazione del disco con le linee di forza del campo magnetico stellare, che si dipartono dai poli della protostella, anch'essi probabilmente con la funzione di disperdere l'eccesso di momento angolare. 4 L'urto di questi getti con il gas dell'inviluppo circostante può generare delle particolari nebulose a emissione note come oggetti di Herbig-Haro. L'aggiunta di massa determina un incremento della pressione nelle regioni centrali della protostella, che si riflette in un aumento della temperatura; quando questa raggiunge un valore di almeno un milione di kelvin, ha inizio la fusione del deuterio, un isotopo dell'idrogeno (21H); la pressione di radiazione che ne risulta rallenta (ma non arresta) il collasso, mentre prosegue la caduta di materiale dalle regioni interne del disco di accrescimento sulla superficie della protostella. La velocità di accrescimento non è costante: infatti la futura stella raggiunge in tempi rapidi quella che sarà la metà della sua massa definitiva, mentre impiega oltre dieci volte più tempo per accumulare la restante massa. La fase di accrescimento è la parte cruciale del processo di formazione di una stella, dal momento che la quantità di materia che l'astro nascente riesce ad accumulare condizionerà irreversibilmente il suo destino successivo: infatti, se la protostella accumula una massa compresa tra 0,08 e 8-10 M☉ evolve successivamente in una stella pre-sequenza principale; se invece la massa è nettamente superiore, la protostella raggiunge immediatamente la sequenza principale. La massa determina inoltre la durata della vita di una stella: le stelle meno massicce vivono molto più a lungo delle stelle più pesanti: si va dal bilione di anni delle stelle di classe M V 51 fino ai pochi milioni di anni delle massicce stelle di classe O. Se invece l'oggetto non riesce ad accumulare almeno 0,08 M☉ la temperatura del nucleo permette la fusione del deuterio, ma si rivela insufficiente all'innesco delle reazioni di fusione dell'idrogeno pròzio, l'isotopo più comune di questo elemento (11H); questa "stella mancata", dopo una fase di stabilizzazione, diviene quella che gli astronomi definiscono nana bruna. L'emissione di vento da parte della protostella all'ignizione della fusione del deuterio determina la dispersione di gran parte dell'involucro di gas e polveri che la circonda; la protostella passa così alla fase di stella pre-sequenza principale (o stella PMS, dall'inglese pre-main sequence), la cui fonte di energia è ancora il collasso gravitazionale e non la fusione dell'idrogeno come nelle stelle di sequenza principale. Si riconoscono due principali classi di stelle PMS: le variabili Orione, che hanno una massa compresa tra 0,08 e 2 M☉, e le stelle Ae/Be di Herbig, con una massa compresa tra 2 e 8 M☉. Non si conoscono stelle PMS più massicce di 8 M☉, dal momento che quando entrano in gioco delle masse molto elevate l'embrione stellare raggiunge in maniera estremamente rapida le condizioni necessarie all'innesco della fusione dell'idrogeno e passa direttamente alla sequenza principale. Le variabili Orione si suddividono a loro volta in stelle T Tauri, stelle EX Lupi (EXor) e stelle FU Orionis (FUor). Si tratta di astri simili al Sole per massa e temperatura, ma alcune volte più grandi in termini di diametro e, per questa ragione, più luminosi. N 1 Sono caratterizzate da alte velocità di rotazione, tipiche delle stelle giovani, e possiedono un'intensa attività magnetica, oltre che getti bipolari. Le FUor e le EXor rappresentano delle categorie particolari di T Tauri, caratterizzate da cambiamenti repentini e cospicui della propria luminosità e del tipo spettrale; le due classi differiscono tra loro per tipo spettrale: le FUor sono, in stato di quiescenza, di classe F o G; le EXor di classe K o M. Le stelle Ae/Be di Herbig, appartenenti alle classi A e B, sono caratterizzate da spettri in cui dominano le linee di emissione dell'idrogeno (serie di Balmer) e del calcio presenti nel disco residuato dalla fase di accrescimento. La stella PMS segue un caratteristico tragitto sul diagramma H-R, noto come traccia di Hayashi, durante il quale continua a contrarsi. La contrazione prosegue fino al raggiungimento del limite di Hayashi, dopodiché prosegue a temperatura costante in un tempo di Kelvin-Helmholtz superiore al tempo di accrescimento; in seguito le stelle con meno di 0,5 masse solari raggiungono la sequenza principale. Le stelle da 0,5 a 8 M☉, al termine della traccia di Hayashi, subiscono invece un lento collasso in una condizione prossima all'equilibrio idrostatico, seguendo a questo punto un percorso nel diagramma H-R detto traccia di Henyey. La fase di collasso ha termine quando finalmente, nel nucleo della stella, si raggiungono i valori di temperatura e pressione necessari per l'innesco della fusione dell'idrogeno prozio; quando la fusione dell'idrogeno diviene il processo di produzione energetica predominante e l'eccesso di energia potenziale accumulata con la contrazione viene dispersa, la stella raggiunge la sequenza principale standard del diagramma H-R e l'intenso vento generato a seguito dell'innesco delle reazioni nucleari spazza via i materiali residui, rivelando alla vista la presenza della stella neoformata. Gli astronomi si riferiscono a questo stadio con l'acronimo ZAMS, che sta per Zero-Age Main Sequence, sequenza principale di età zero. La curva della ZAMS può essere calcolata mediante simulazioni computerizzate delle proprietà che le stelle avevano al momento del loro ingresso in questa fase. Le successive trasformazioni della stella sono studiate dall'evoluzione stellare. Pur esplicando in modo chiaro le modalità attraverso cui avviene, il modello standard non spiega che cosa dia inizio al collasso. Non sempre la formazione di una stella inizia in maniera del tutto spontanea, a causa delle turbolenze interne oppure per via della diminuzione della pressione interna del gas a causa del raffreddamento o della dissipazione dei campi magnetici. Anzi, più spesso, come dimostrano innumerevoli dati osservativi, è necessario l'intervento di qualche fattore che dall'esterno perturbi la nube, causando le instabilità locali e promuovendo dunque il collasso. A tal proposito numerosi sono gli esempi di stelle, per lo più appartenenti ad ampie associazioni stellari, le cui caratteristiche mostrano che si sono formate quasi contemporaneamente: dal momento che un simultaneo collasso di nuclei densi indipendenti sarebbe un'incredibile coincidenza, è più ragionevole pensare che questo sia la conseguenza di una forza applicata dall'esterno, che ha agito sulla nube causando il collasso e la successiva formazione stellare. Tuttavia non sono infrequenti gli esempi di collassi iniziati spontaneamente: alcuni esempi di questo sono stati individuati tramite l'osservazione infrarossa in certi nuclei densi isolati, relativamente quiescenti, posti in nubi vicine tra loro. In alcuni di essi, come nel globulo di Bok Barnard 355, sono state riscontrate tracce di lenti moti centripeti interni e sono state osservate anche delle sorgenti infrarosse, segno che potrebbero essere avviati alla formazione di nuove stelle. Diversi possono essere gli eventi esterni in grado di promuovere il collasso di una nube: le onde d'urto generate dallo scontro di due nubi molecolari o dall'esplosione nelle vicinanze di una supernova; le forze di marea che si instaurano a seguito dell'interazione tra due galassie, che innescano una violenta attività di formazione stellare definita starburst (si veda anche il paragrafo Variazioni nella durata e nel tasso di formazione stellare); gli energici super-flare di un'altra vicina stella in uno stadio più avanzato di formazione oppure la pressione del vento o l'intensa emissione ultravioletta di vicine stelle massicce di classe O e B, che può regolare i processi di formazione stellare all'interno delle regioni H II. Si ipotizza inoltre che la presenza di un buco nero supermassiccio al centro di una galassia possa avere un ruolo regolatore nei confronti del tasso di formazione stellare nel nucleo galattico: 72 infatti, un buco nero che sta accrescendo materia con tassi molto elevati può diventare attivo ed emettere un forte getto relativistico collimato in grado di limitare la successiva formazione di stelle. Tuttavia, l'emissione radio attorno ai getti, così come l'eventuale bassa intensità del getto stesso, può avere un effetto esattamente opposto, innescando la formazione di stelle qualora si trovi a collidere con una nube che gli transita nelle vicinanze. 73 L'attività di formazione stellare risulta fortemente influenzata dalle condizioni fisiche estreme che si riscontrano entro 10-100 parsec dal nucleo galattico: intense forze di marea, incremento dell'entità delle turbolenze, riscaldamento del gas e presenza di campi magnetici piuttosto intensi; 74 a rendere più complesso questo quadro concorrono inoltre gli effetti dei flussi microscopici, della rotazione e della geometria della nube. Sia la rotazione che i campi magnetici possono ostacolare il collasso della nube, 75 76 mentre la turbolenza favorisce la frammentazione, e su piccole scale promuove il collasso. 77 Eccettuando la lacuna sopra discussa, il modello standard descrive bene ciò che accade in nuclei isolati in cui sta avvenendo la formazione di una stella. Tuttavia, la stragrande maggioranza delle stelle non nasce in solitaria, ma in folti ammassi stellari, e il modello non spiega l'influenza che tale ambiente esercita sulle stelle nascenti. Inoltre, rispetto a quanto ritenuto in passato, la formazione stellare è un evento piuttosto violento: infatti l'osservazione infrarossa ha mostrato che la formazione di una stella interferisce negativamente sulla nascita degli astri adiacenti, dal momento che la radiazione e il vento prodotti nelle ultime fasi della formazione possono limitare la quantità di gas che può accrescere liberamente sulle vicine protostelle. Per sopperire a tale lacuna sono state sviluppate due teorie. La prima, detta teoria dell'accrescimento competitivo, si concentra sulle interazioni tra nuclei densi adiacenti. La versione più estrema di questa teoria prevede la formazione di numerose piccole protostelle, che si muovono rapidamente nella nube entrando in competizione tra loro per catturare quanto più gas possibile. Alcune protostelle tendono a prevalere sulle altre, divenendo le più massicce; altre potrebbero persino essere espulse dall'ammasso, libere di muoversi all'interno della galassia. La concorrente, la teoria del nucleo turbolento, privilegia invece il ruolo della turbolenza dei gas: la distribuzione delle masse stellari rispecchia, infatti, lo spettro dei moti turbolenti all'interno della nube piuttosto che una successiva competizione per l'accumulo di massa. Le osservazioni sembrano dunque favorire questo modello, anche se la teoria dell'accrescimento competitivo potrebbe sussistere in regioni in cui la densità protostellare è particolarmente elevata. È ormai assodato che il processo di formazione stellare raramente porta alla nascita di un singolo oggetto; anzi, più spesso il risultato è la formazione di un gruppo di oggetti più o meno intensamente legati dalla forza di gravità, poiché, come si è visto, solo una nube sufficientemente grande può collassare sotto la sua stessa gravità, dando origine a un certo numero di frammenti da cui nasceranno altrettante stelle o sistemi stellari multipli, che andranno a costituire un ammasso o un'associazione stellare. Anche se è possibile che alcuni sistemi multipli (in particolare le binarie a lungo periodo) si siano formati dalla cattura gravitazionale reciproca tra due o più stelle singole nate indipendentemente, tuttavia, data la bassissima probabilità di un simile evento (sarebbero comunque necessari almeno tre oggetti anche per la formazione di un sistema binario, dal momento che in base alla legge della conservazione dell'energia serve comunque un terzo elemento che assorba l'energia cinetica in eccesso affinché due stelle possano legarsi reciprocamente) e l'elevato numero di stelle binarie note, appare evidente che quello della cattura gravitazionale non sia il principale meccanismo di formazione di un sistema multiplo. Anzi, l'osservazione di sistemi multipli costituiti da stelle pre-sequenza principale dà credito all'ipotesi secondo cui simili sistemi esistano già durante la fase di formazione. Il modello che dunque ne esplica in modo accettabile l'esistenza suggerisce che questi si siano creati dalla suddivisione di un singolo originario nucleo denso in più frammenti orbitanti attorno a un comune centro di massa, i quali collassano a formare le componenti del futuro sistema binario o multiplo. Gli ammassi e le associazioni stellari sono il prodotto del collasso e della frammentazione di una vasta porzione di una nube molecolare gigante, processo questo che può durare diverse migliaia di anni; si stima che il tasso di formazione degli ammassi aperti nella nostra Galassia sia di circa uno ogni poche migliaia di anni. Le prime stelle dell'ammasso a vedere la luce sono le più massicce, calde e luminose (di classe spettrale O e B), la cui intensa emissione ultravioletta ionizza rapidamente il gas della nube rendendola una regione H II. Il vento da queste prodotto e la pressione di radiazione spazzano via il gas non ancora collassato, isolando i bozzoli avviati alla formazione delle stelle di massa intermedia e piccola. Dopo alcuni milioni di anni, l'ammasso sperimenta la prima esplosione di supernova, che contribuisce ulteriormente ad espellere i gas residui. In questo scenario solamente una quantità di materia compresa tra il 10% e il 30-40% del gas originario della nube collassa per formare le stelle dell'ammasso, prima di essere espulso; di conseguenza viene a perdersi la gran parte della massa che potrebbe potenzialmente collassare in ulteriori stelle. Tutti gli ammassi perdono una notevole quantità di materia durante la loro prima giovinezza e molti si disgregano prima ancora di essersi formati del tutto. Le stelle giovani rilasciate dal loro ammasso natale diventano così parte della popolazione galattica diffusa, ossia quelle stelle prive di legami gravitazionali che si confondono fra le altre stelle della galassia. Poiché la gran parte delle stelle, se non tutte, quando si formano fanno parte di un ammasso, gli ammassi stessi vengono considerati come gli elementi fondamentali delle galassie; i violenti fenomeni di espulsione di gas che modellano e disgregano molti ammassi aperti alla loro nascita lasciano la loro impronta sulla morfologia e sulle dinamiche delle strutture galattiche. Spesso accade che due o più ammassi apparentemente distinti si siano formati dalla stessa nube molecolare: è il caso ad esempio di Hodge 301 e R136, nella Grande Nube di Magellano, che si sono formati dai gas della Nebulosa Tarantola; nella nostra Galassia invece si è scoperto, ripercorrendo indietro nel tempo i loro movimenti nello spazio, che due grandi ammassi aperti relativamente vicini al sistema solare, le Iadi e il Presepe, si sarebbero formati dalla stessa nube circa 600 milioni di anni fa. 89 Talvolta una coppia di ammassi aperti formatisi nello stesso periodo può costituire un ammasso doppio; l'esempio più noto nella Via Lattea è quello dell'Ammasso Doppio di Perseo, formato da h Persei e da χ Persei, ma sono noti un'altra decina di ammassi doppi, soprattutto in altre galassie, come nella Piccola Nube di Magellano e nella stessa Grande Nube, entrambe galassie satelliti della nostra; è comunque più semplice identificare effettivamente come tali gli ammassi doppi nelle galassie esterne, dal momento che nella nostra Galassia la prospettiva può far apparire vicini due ammassi che in realtà sono distanti tra loro. Presa alla lettera, la teoria standard della formazione stellare sembra precludere l'esistenza delle stelle massicce (M>8 M☉), dal momento che il rapido raggiungimento delle condizioni necessarie per innescare la fusione dell'idrogeno causerebbe l'immediato arresto della fase di accrescimento e dunque una forte limitazione alla massa della futura stella. Pertanto, si ritiene che nel caso delle stelle massicce al modello standard si aggiungano dei meccanismi supplementari, ancor'oggi in certa misura oggetto d'ipotesi, che consentano a questi oggetti di raggiungere le quantità di materia che li caratterizzano. Per le stelle massicce il tempo di Kelvin-Helmholtz è notevolmente inferiore al tempo di accrescimento: di conseguenza, queste stelle non passano attraverso la fase di PMS, ma raggiungono direttamente la sequenza principale. L'intensa emissione elettromagnetica (in particolare di ultravioletti - UV -) che ne consegue porrebbe fine immediatamente alla fase di accrescimento, mantenendo dunque la massa della stella entro una decina di masse solari. In passato si riteneva che questa pressione di radiazione fosse sufficiente ad arrestare l'accrescimento della protostella; di conseguenza, risultava impensabile la formazione di stelle di massa superiore ad una decina di masse solari. Tuttavia, la scoperta di stelle aventi anche masse ben oltre le 100 M☉ ha indotto gli astrofisici a formulare dei modelli che potessero spiegarne la formazione. Fino ai primi anni ottanta si riteneva che un ruolo importante nella formazione di una stella massiccia fosse rivestito dalle polveri miste ai gas della nube, che sembrerebbero svolgere una funzione di tampone tra l'irraggiamento della protostella massiccia ed il gas della nube. La radiazione UV disgrega le polveri nelle immediate vicinanze dell'astro o le confina a una certa distanza, sicché i granelli di polvere si accumulano andando a costituire un guscio la cui sorte dipende dalle caratteristiche chimico-fisiche delle polveri stesse. Se queste hanno un punto di sublimazione basso, la radiazione disgrega facilmente il guscio; l'irraggiamento non è però sufficientemente potente da contrastare la caduta della materia, sicché essa prosegue fino al termine dei materiali a disposizione. Viceversa, se la temperatura di sublimazione delle polveri è molto alta, il guscio assorbe la radiazione UV riemettendola nell'infrarosso; la pressione esercitata da questo irraggiamento secondario contrasta la caduta dei gas arrestando l'accrescimento. Tuttavia, la scoperta che in media il punto di sublimazione delle polveri è piuttosto basso alimentò le suggestioni che potessero esistere stelle con masse addirittura di 1000 masse solari; questo entusiasmo fu però frenato dall'ulteriore scoperta che le polveri sono costituite prevalentemente da grafite e silicati, che hanno un alto potere assorbente nei confronti della radiazione UV: di conseguenza, l'irraggiamento infrarosso secondario delle polveri avrebbe sempre prevalso sul collasso della nube, rendendo di fatto impossibile la formazione di una stella così massiccia. Alla fine degli anni novanta, un astrofisico giapponese ipotizzò che il collasso avvenisse in maniera asimmetrica, e che un disco mediasse l'accrescimento, proprio come accade per le stelle di piccola massa. Diversi lavori teorici hanno rinforzato quest'ipotesi, mostrando che la produzione di getti e flussi molecolari a partire dal disco crea una cavità nel materiale nebuloso, formando un corridoio di sfogo attraverso il quale la grande radiazione di una protostella massiccia può disperdersi senza inficiare eccessivamente l'accrescimento. L'ipotesi è stata poi confermata da numerosi dati, sia teorici sia osservativi: sono state individuate, tramite procedimenti indiretti basati sulla luminosità della protostella riflessa dalla nube, diverse strutture discoidali, grandi alcune migliaia di unità astronomiche, che si ritiene appartengano a protostelle di classe B, che possederebbero una massa inferiore a 20 M☉ ed un tasso di accrescimento stimato in circa 10−4 M☉/anno. Gli studi condotti sull'emissione di maser CH3OH e H2O da parte di protostelle massicce ha indotto gli astrofisici a ipotizzare che il campo magnetico generato dalla protostella, proprio come nel caso delle stelle di piccola massa, giochi un ruolo importante nel vincolare le polveri, stabilizzando quindi il disco di accrescimento, e consenta inoltre di mantenere gli elevati tassi di accrescimento necessari per la nascita della stella. La ricerca invece di dischi attorno alle protostelle supermassicce di classe O (che possono anche superare le 100 M☉) non ha ancora dato frutti, anche se sono state individuate delle imponenti strutture toroidali (~20 000 UA e 50-60 M☉) i cui tassi di accrescimento sono stimati tra 2 × 10−3 e 2 × 10−2 M☉/anno. Alla luce di questa scoperta si ipotizza che l'accrescimento delle stelle massicce sia mediato da questi imponenti ed instabili tori di gas e polveri, nel cui versante interno si trova il disco di accrescimento. Anche alla formazione delle stelle massicce è stata applicata la teoria dell'accrescimento competitivo, la quale riesce a spiegare sia le grandi masse sia la tipica collocazione galattica di questa classe stellare. Infatti, la maggior parte delle stelle massicce note è situata nelle zone centrali di grandi ammassi stellari o di associazioni OB, che corrispondono al "fondo" del pozzo gravitazionale della nube: le protostelle che si sono originate in questa posizione risultano avvantaggiate dal potenziale gravitazionale e riescono ad accumulare più materia rispetto a quelle che si originano nelle altre aree della nube. In questo ambiente la densità di protostelle di massa intermedia può risultare tale da favorire le possibilità di collisione; di conseguenza, le stelle di massa media formatesi in questo modo potrebbero poi fondersi per dar luogo a una stella massiccia. 100 101 Questo scenario implica elevate densità dei gas, che una gran parte delle stelle massicce risultanti siano dei sistemi binari e che siano poche le stelle di massa intermedia che siano riuscite a competere con le stelle più massive. 102 Alcune osservazioni e simulazioni computerizzate confermano in parte quest'ipotesi, anche se presuppone delle densità di presenza protostellare talmente elevate (oltre 3 milioni di astri per anno luce cubo) da sembrare poco realistiche. Degni di nota sono i risultati, pubblicati nel gennaio 2009, di una simulazione computerizzata tesa a far luce sulle modalità che conducono alla nascita di una stella estremamente massiccia. La simulazione, in accordo con il modello standard della formazione stellare, prevede che la scintilla iniziale della nascita di una protostella massiccia sia il collasso di un frammento molecolare e la contemporanea costituzione del disco di accrescimento. La grande mole del disco lo rende tuttavia gravitazionalmente instabile, il che ne rende possibile la frammentazione e la formazione, a partire dai frammenti, di un certo numero protostelle secondarie; sebbene alcune di queste, a causa delle perturbazioni gravitazionali, possano essere espulse dal disco e dar luogo a singole stelle, la gran parte sembra invece destinata a precipitare al centro del disco per fondersi con la protostella principale, la quale acquisisce così una massa estremamente elevata. La simulazione ha anche dimostrato come mai gran parte delle stelle massicce note siano in realtà dei sistemi multipli: si è visto infatti che una o più protostelle secondarie riescono a raggiungere, senza esser fagocitate dalla protostella primaria, una massa tale da svincolarsi dal disco della principale, formare a loro volta un proprio disco e fondersi con le protostelle secondarie che da esso traggono origine, divenendo quindi anche queste delle stelle massicce. 103 L'osservazione di alcune regioni di formazione stellare da parte del telescopio spaziale Spitzer ha in parte confermato questo modello, anche se la piena verifica è complicata: infatti è difficile riuscire a cogliere le stelle massicce nell'atto della loro formazione, visto che si tratta comunque di una classe stellare piuttosto rara e che il processo che porta alla loro formazione si esaurisce in tempi assai brevi su scala astronomica. Ora che abbiamo approfondito il concetto di formazione stellare possiamo continuare a trattare del modello standard. La classe spettrale di una stella è determinata dalla temperatura superficiale della stella stessa. Infatti, la legge di Wien prescrive che un corpo nero riscaldato a una certa temperatura emetterà una radiazione elettromagnetica con un determinato picco di intensità. In particolare, tale picco coinciderà con una lunghezza d'onda tanto minore quanto sarà più alta la temperatura del corpo nero. Sebbene una stella non sia un corpo nero, lo può essere considerato con una certa approssimazione. A questo punto diviene fondamentale approfondire anche il concetto di nucleosintesi stellare. La nucleosintesi stellare è il termine che indica collettivamente le reazioni nucleari che avvengono all'interno di una stella, con l'effetto di produrre i nuclei degli elementi chimici. Nelle stelle, vengono prodotti tutti gli elementi chimici tranne l'idrogeno, che fa da carburante iniziale. L'elio, benché prodotto in quantità, è già presente nell'Universo in grandi percentuali, e la massa apportata dalle stelle è contenuta. Per tutti gli altri elementi, compresa la grande maggioranza degli atomi che compongono il nostro pianeta, assenti o presenti in quantità trascurabili nel gas interstellare, le stelle sono le principali responsabili della loro esistenza. In particolare, le stelle di grande massa producono le quantità più grandi di elementi fino al ferro-56, mentre gli elementi più pesanti possono essere prodotti in un'esplosione di supernova, che avviene alla fine della vita di una stella di grande massa. Per dare un'idea intuitiva del processo, la fusione nucleare che avviene al centro del Sole è quasi la stessa di quella di una bomba H. In effetti, ciò che accade in una stella è paragonabile ad un'esplosione atomica continua contenuta dal suo stesso peso, o equivalentemente ad un reattore a fusione nucleare. All'interno del Sole, vengono fuse 600 milioni di tonnellate di idrogeno al secondo, e di queste 4 milioni di tonnellate vengono convertite in energia pura, secondo la famosa equazione di Einstein E=mc². Tali reazioni furono scoperte in un lungo arco di tempo che iniziò all'inizio del XX secolo, quando gli astrofisici si resero conto per la prima volta che l'energia delle reazioni di fusione nucleare erano responsabili della longevità del Sole come fonte di calore e luce. Le spiegazioni precedenti (combustibile chimico, contrazione gravitazionale) erano inadeguate per spiegare l'età di 4,5 miliardi di anni della nostra stella. Nel 1920, Arthur Eddington, sulla base di precise misure degli atomi da parte di F. W. Aston, fu il primo a suggerire che le stelle ottenessero la loro energia dalla fusione nucleare di idrogeno in elio. Nel 1928, George Gamow derivò quello che è oggi chiamato il fattore Gamow, una formula quanto-meccanica che dà la probabilità di portare due nuclei sufficientemente vicini perché la forza nucleare forte possa superare la barriera di Coulomb. Il fattore Gamow fu usato nella decade seguente da Robert Atkinson e Fritz Houtermans, e più tardi da Gamow stesso e da Edward Teller per calcolare il ritmo a cui le reazioni nucleari si svolgono alle alte temperature che si pensa esistano nell'interno delle stelle. Nel caso del Sole, il calcolo dà il risultato esposto più sopra, assieme al tempo medio necessario perché un certo protone venga fuso: circa 13 miliardi di anni, il che spiega facilmente l'età della nostra stella. Nel 1939, in un articolo chiamato "Energy Production in Stars" (Produzione di energia nelle stelle), Hans Bethe analizzò le differenti possibilità per delle reazioni in cui l'idrogeno viene fuso in elio. Selezionò due processi che pensava fossero quelli che effettivamente avvenivano nelle stelle. Il primo, la catena protone-protone, è la principale fonte di energia nelle stelle di piccola massa, come il Sole o più piccole. Il secondo, il ciclo del carbonio-azoto-ossigeno, che era stato considerato anche da Carl von Weizsäcker nel 1938, è importante in stelle più grandi. Negli anni seguenti, furono aggiunti molti dettagli alla teoria di Bethe, come un famoso articolo del 1957 pubblicato da Margaret Burbidge, Geoffrey Burbidge, William Fowler e Fred Hoyle. Tale articolo riassumeva e rifiniva le ricerche precedenti in una visione coerente che era consistente con le abbondanze osservate degli elementi.

Le reazioni più importanti sono:

Fusione dell'idrogeno:

  • la catena protone-protone
  • il ciclo del carbonio-azoto-ossigeno

Fusione dell'elio:

  • il processo alfa
  • il processo tre alfa

Fusione di elementi più pesanti:

  • processo di fusione del carbonio
  • processo di fusione del neon
  • processo di fusione dell'ossigeno
  • processo di fusione del silicio

Produzione di elementi più pesanti del ferro:

  • cattura di neutroni (processi r e s)
  • cattura di protoni (processo p)

Gli elementi oltre il ferro nella tavola periodica non possono formarsi tramite la normale fusione nucleare che avviene nelle stelle. Fino al nichel, la fusione è un processo esoergonico (cioè produce energia) quindi avviene spontaneamente. Gli elementi del "gruppo del ferro" sono quelli che possiedono l'energia di legame maggiore, per cui la fusione di elementi per creare nuclei con numero di massa superiore a quello del nichel non può avvenire perché assorbirebbe energia. In realtà, il 52Fe può catturare un nucleo di elio per dare 56Ni ma è l'ultimo passaggio nella catena di cattura dell'elio. Il flusso di neutroni all'interno di una stella può produrre isotopi più pesanti tramite la cattura di neutroni da parte di nuclei. Gli isotopi così prodotti sono generalmente instabili, così si realizza un equilibrio dinamico che determina il verificarsi di qualsiasi guadagno netto in numero di massa. La probabilità per la creazione di un isotopo è solitamente definita in termini di una "sezione" per tali processi, ciò ha rivelato che c'è una sezione sufficiente per la cattura di neutroni per creare isotopi fino al bismuto-209 (il più pesante isotopo stabile conosciuto). La produzione di altri elementi come rame, argento, oro, zirconio e piombo si ritiene avvenga tramite cattura neutronica. Ciò è detto "processo s" dagli astronomi, che sta per "slow neutron capture" (letteralmente: "cattura neutronica lenta"). Per isotopi più pesanti del 209Bi, il processo S sembra non funzionare. L'attuale opinione è che tali isotopi sarebbero formati nelle enormi esplosioni conosciute come supernove. Nelle esplosioni di supernove, viene prodotto un grande flusso di neutroni ad alta energia e i nuclei bombardati con tali neutroni aumentano la loro massa un'unità alla volta per produrre i nuclei pesanti. Questo processo apparentemente procede molto rapidamente, durante queste esplosioni, ed è chiamato "processo r" che sta per "rapid neutron capture" (letteralmente: "cattura neutronica rapida"). Tale processo deve avvenire molto rapidamente, in modo che i prodotti intermedi non abbiano il tempo di decadere. Con un ampio eccesso di neutroni, questi nuclei si disintegrerebbero nuovamente in nuclei più leggeri se non fosse che il grande flusso di neutrini rende possibile la conversione di neutroni in protoni secondo la forza debole nei nuclei. Gli strati contenenti gli elementi pesanti possono essere espulsi dalla esplosione della supernova, e fornire la materia prima di elementi pesanti nelle distanti nuvole di idrogeno che poi condenseranno per formare nuove stelle. Un altro concetto da comprendere quando parliamo della sequenza principale è la struttura stellare. Ogni stella ha una propria struttura interna che varia a seconda della massa e dell'età; i modelli attualmente formulati sulla struttura stellare cercano di descrivere abbastanza dettagliatamente la struttura interna dell'astro servendosi della luminosità e del colore consentendo inoltre di predirne con una certa approssimazione l'evoluzione futura. L'interno di una stella di sequenza principale si trova in una condizione di equilibrio in cui le forze predominanti, la gravità (che ha un verso orientato in direzione del centro della stella) e l'energia termica della massa del plasma, con verso orientato in direzione della superficie, si controbilanciano perfettamente. Perché questa situazione di stabilità permanga, è necessario che le temperature raggiunte nel nucleo raggiungano o superino i 107 K; la combinazione dell'elevata temperatura e di una pressione altrettanto elevata favoriscono le reazioni di fusione dei nuclei di idrogeno in nuclei elio, che sprigionano un'energia sufficientemente alta da contrastare il collasso cui la stella andrebbe naturalmente incontro. Tale energia è emessa sotto forma di neutrini e fotoni gamma, che, interagendo col plasma circostante, contribuiscono a mantenere elevata la temperatura assieme all'energia termica del nucleo. L'interno di una stella stabile si trova in uno stadio di equilibrio sia idrostatico sia termico ed è caratterizzato da un gradiente di temperatura che origina un flusso energetico in direzione dell'esterno. La struttura interna di una stella di sequenza principale dipende in primo luogo dalla sua massa, che è all'origine della diversa disposizione delle strutture all'interno del corpo celeste. La zona radiativa è quella regione all'interno della stella in cui il trasferimento dell'energia per irraggiamento è sufficientemente efficiente per mantenere il flusso energetico. In questa zona il plasma non subisce né perturbazioni né spostamenti di massa; se però il plasma inizia a dare manifestazioni di instabilità e compie movimenti di tipo convettivo, la regione assume le caratteristiche di zona convettiva. Quanto detto si verifica generalmente nelle zone della stella in cui sono localizzati flussi altamente energetici, come nello strato immediatamente superiore al nucleo o in aree con un'opacità superiore allo strato più esterno. 1 La posizione della zona radiativa e di quella convettiva di una stella di sequenza principale dipende dalla sua classe spettrale e dalla massa. Nelle stelle con una massa diverse volte quella solare la zona convettiva è posta in profondità, adiacente al nucleo, mentre la zona radiativa è posta subito al di sopra della zona convettiva. Nelle stelle meno massicce, come il Sole, le due zone sono invertite, ovvero la zona radiativa è adiacente al nucleo. 2 Le nane rosse con una massa inferiore a 0,4 masse solari presentano solamente una zona convettiva che previene l'accumulo di un nucleo di elio. In gran parte delle stelle la zona convettiva tende a variare nel corso del tempo man mano che la stella procede nella sua evoluzione e viene modificata la sua composizione interna. La porzione visibile di una stella di sequenza principale è detta fotosfera. In questo strato il plasma della stella diviene trasparente ai fotoni luminosi e permette la propagazione delle radiazioni nello spazio. Sulla fotosfera compaiono delle zone più scure causate dall'attività magnetica dell'astro: si tratta delle macchie stellari, che appaiono scure poiché hanno una temperatura inferiore a quella del resto della fotosfera. Al di sopra della fotosfera si staglia l'atmosfera stellare. In una stella di sequenza principale, come il Sole, la parte più bassa dell'atmosfera, detta cromosfera, è una debole regione in cui hanno luogo vari fenomeni come le spicole o i flare, circondata da una zona di transizione, dall'ampiezza di 100 km, in cui la temperatura cresce enormemente. Al di sopra si trova la corona, un volume di plasma ad elevatissima temperatura (oltre il milione di kelvin) che si estende nello spazio per diversi milioni di km. L'esistenza della corona sembra dipendere da una zona convettiva negli strati superficiali della stella. A dispetto dell'altissima temperatura, la corona emette una quantità relativamente piccola di luce e risulta visibile solo durante un'eclissi solare. Dalla corona si diparte un vento stellare costituito da plasma estremamente rarefatto, che si propaga fino a quando non interagisce col mezzo interstellare. Il vento solare, ad esempio, si estende fino all'eliopausa, formando una regione a forma di bolla nota come eliosfera. L'energia termica proveniente dal nucleo è trasportata negli strati superiori in differenti modi, principalmente per mezzo della convezione e dell'irraggiamento, ma anche per conduzione, come nelle nane bianche. La convezione è la modalità prevalente, in cui la temperatura è abbastanza alta da permettere che una data quantità di gas continui a risalire all'interno della stella se sale in maniera piuttosto lenta secondo dei processi adiabatici. In tal caso, la colonna di gas più calda tende a salire secondo il principio di Archimede e continua la sua ascesa finché si mantiene più calda del gas circostante; quando però esaurisce la sua energia termica e si raffredda, la colonna di gas termina la sua ascesa ed inizia la discesa verso l'iniziale posizione del gas. Nelle zone con un basso gradiente termico ed un'opacità abbastanza bassa da consentire il passaggio delle radiazioni risulta invece favorito il trasporto tramite l'irraggiamento. Nelle stelle di massa paragonabile al Sole (0,3-1,5 masse solari) la fusione dell'idrogeno avviene essenzialmente tramite la cosiddetta catena protone-protone, che stabilisce un gradiente di temperatura non troppo elevato; perciò l'irraggiamento tende a prevalere nella parte più interna della stella. La parte più esterna è invece decisamente più fredda, tanto che l'idrogeno diviene neutro ed opaco alle radiazioni ultraviolette, permettendo la convezione. Riassumento, le stelle con una massa simile al Sole presentano la zona perinucleare radiativa e subito sopra uno strato convettivo. Il nucleo delle stelle massicce (con massa superiore a 1,5 masse solari) possiede una temperatura superiore ad 1,8 × 107 K, che fa procedere la fusione dell'idrogeno in elio anziché secondo la catena protone-protone secondo il ciclo del carbonio-azoto-ossigeno (ciclo CNO). In tale catena di reazioni la produzione di energia dipende dalla quindicesima potenza della temperatura, mentre nella catena protone-protone dipende dalla quarta potenza della temperatura. 2 7 Poiché il ciclo CNO è altamente sensibile alle variazioni termiche, il gradiente di temperatura nella parte più interna dell'astro è abbastanza elevato da rendere il nucleo convettivo. Nella parte più esterna il gradiente termico è nettamente più basso, ma è ancora così elevato da mantenere completamente ionizzato l'idrogeno, che diviene trasparente alle radiazioni ultraviolette, rendendo la zona radiativa. Le stelle di sequenza principale meno massicce non presentano una zona radiativa, ma il trasporto energetico avviene solamente per convezione. Allo stesso modo le stelle giganti sono completamente convettive. Lo schema più semplice utilizzato per descrivere la struttura stellare è quello di una simmetria sferica quasi statica che considera la stella in uno stato di equilibrio. Proprie di tale modello sono quattro equazioni differenziali di primo grado: due rappresentano il modo in cui la materia e la pressione variano in base al raggio; le altre due mostrano in che modo temperatura e luminosità varino al variare del raggio. A mano a mano che l'elio inerte, prodotto della fusione, si accumula nel nucleo della stella, la riduzione della quantità di idrogeno all'interno della stella si traduce nella diminuzione del tasso di fusione. Di conseguenza il nucleo stellare si contrae aumentando la sua temperatura e pressione, il che produce un nuovo innalzamento del tasso di fusione per compensare la maggiore densità del nucleo. La maggiore produzione di energia da parte del nucleo aumenta la luminosità e il raggio della stella nel tempo. Ad esempio, la luminosità del Sole, quando entrò nella sequenza principale, era circa il 70% di quella attuale. Cambiando la sua luminosità, la stella cambia anche la sua posizione nel diagramma H-R. Di conseguenza la sequenza principale non è una semplice linea nel diagramma, ma appare come una banda relativamente spessa in quanto in essa sono presenti stelle di tutte le età. Esistono altri fattori che allargano la banda della sequenza principale. Alcuni sono estrinseci, come ad esempio le incertezze nella distanza delle stelle o la presenza di una stella binaria irrisolta che altera i parametri stellari. Ma altri sono intrinseci: oltre alla differente composizione chimica, dovuta sia alla metallicità iniziale della stella, sia al suo stadio evolutivo 38 , le interazioni con una compagna stretta , una rotazione particolarmente rapida 40 o un campo magnetico peculiare possono modificare leggermente la posizione della stella all'interno della sequenza principale. Ad esempio, le stelle che hanno metallicità molto bassa, cioè che sono molto povere di elementi con numero atomico maggiore di quello dell'elio, si collocano un po' al di sotto della sequenza principale. Esse sono note come stelle subnane, benché esse, come tutte le altre stelle di sequenza principale, fondano l'idrogeno nei loro nuclei. Una regione quasi verticale nel diagramma H-R, conosciuta come striscia di instabilità, è occupata dal stelle variabili pulsanti, fra le quali le più note sono le variabili Cefeidi. Le pulsazioni sono correlate a oscillazioni di luminosità con periodi molto regolari. La striscia di instabilità interseca la parte alta della sequenza principale nella regione delle classi A e F, cioè in quella occupata dalle stelle aventi una massa compresa fra 1 e 2 M☉. La parte della striscia di instabilità più vicina alla sequenza principale è occupata dalle variabili Delta Scuti. Le stelle variabili di sequenza principale di questa regione presentano solo piccoli cambiamenti di luminosità che sono difficili da rilevare 42 . Altre stelle di sequenza principale variabili, come le variabili Beta Cephei, non hanno relazioni dirette con la striscia di instabilità. L'energia totale che una stella può generare mediante fusione è limitata dal quantitativo di idrogeno presente nel suo nucleo. Perché una stella sia in equilibrio l'energia generata nel nucleo deve essere uguale a quella irraggiata dalla superficie. Poiché la luminosità equivale all'energia irraggiata nell'unità di tempo, in prima approssimazione si può dedurre la lunghezza della vita di una stella dall'energia che può produrre durante la sua esistenza dividendola per la sua luminosità. Quindi, contrariamente a quello che si potrebbe pensare, le stelle massicce, sebbene dispongano di maggior combustibile nucleare da fondere, hanno una vita più breve perché al crescere della massa l'incremento della luminosità è maggiore di quello della massa stessa. Di conseguenza, le stelle più massicce permangono nella sequenza principale solo pochi milioni di anni, mentre le stelle aventi una massa di 0,1 M☉ possono rimanere nella sequenza principale più di 1000 miliardi di anni. L'esatta relazione fra massa e luminosità dipende da quanto efficientemente l'energia viene trasportata dal nucleo alla superficie. Una maggiore opacità ha un effetto isolante che mantiene una maggiore quantità di energia nel nucleo, sicché la stella ha bisogno di produrre minori quantità di energia per mantenersi in equilibrio idrostatico. Al contrario, una minore opacità si traduce in un maggiore rilascio di energia da parte del nucleo che ha bisogno di produrne in quantità maggiore per mantenere l'equilibrio. Tuttavia, se l'opacità aumenta di molto, allora la convezione può risultare il meccanismo più efficiente di trasporto dell'energia, con il risultato che le condizioni per rimanere in equilibrio mutano. Nelle stelle di sequenza principale massicce l'opacità è determinata dallo scattering di elettroni, che rimane all'incirca costante con il crescere della temperatura. Di conseguenza, la luminosità cresce proporzionalmente al cubo della massa . Per le stelle al di sotto delle 10 M☉, l'opacità dipende dalla temperatura, il che si traduce in una crescita della luminosità proporzionale alla quarta potenza della massa. Per le stelle di piccola massa, le molecole dell'atmosfera contribuiscono all'opacità. Sotto le 0,5 M☉, la luminosità cresce con la potenza di 2,3 della massa, rendendo più piatta la curva in un grafico massa-luminosità nella parte relativa alle masse più piccole. Tuttavia, anche questi raffinamenti sono solo approssimativi in quanto la relazione massa-luminosità può variare con la composizione chimica della stella. Le stelle di massa superiore alle 0,5 M☉, una volta esaurito l'idrogeno nel nucleo e una volta diventate delle giganti rosse, possono cominciare a fondere l'elio in carbonio tramite il processo tre alfa, aumentando la loro luminosità. Di conseguenza questo stadio della loro evoluzione dura molto meno, comparato a quello di sequenza principale. Per esempio il Sole permarrà nella sequenza principale 10 miliardi di anni, mentre la sua fase di fusione dell'elio durerà 130 milioni di anni. Di conseguenza, delle stelle esistenti con massa superiore alle 0,5 M☉ il 90% sono stelle di sequenza principale. Un altro concetto che tratteremo è l'evoluzione stellare. L'evoluzione stellare è l'insieme dei cambiamenti che una stella sperimenta nel corso della sua esistenza. La stella nel corso della sua vita subisce variazioni di luminosità, raggio e temperatura dell'esterno e del nocciolo anche molto pronunciate. Tuttavia, dato che il ciclo vitale di una stella si estende per un tempo molto lungo su scala umana (milioni o miliardi di anni), è impossibile per un essere umano seguire passo passo l'intero ciclo di vita di una stella. Per comprendere come si evolvono le stelle si osserva di solito una popolazione di stelle che contiene stelle in fasi diverse della loro vita, e poi si costruisce un modello matematico che permette di riprodurre le proprietà osservate. Uno strumento ancora oggi fondamentale per gli astronomi, per esempio per inquadrare immediatamente lo stato e l'evoluzione di una stella è il diagramma Hertzsprung-Russell (detto per brevità diagramma H-R). Il diagramma riporta temperatura superficiale e luminosità (che variano insieme al raggio in funzione dell'età, della massa e della composizione chimica della stella) e permette di sapere in che fase della vita si trova una stella. A seconda della massa, dell'età e della composizione chimica, i processi fisici in atto in una stella sono diversi, e queste differenze portano stelle con caratteristiche diverse a seguire diversi percorsi evolutivi sul diagramma H-R. Alcuni astronomi considerano non appropriato il termine "evoluzione", e preferiscono usare il termine ciclo vitale stellare, in quanto le stelle non subiscono un processo evolutivo simile a quello degli individui di una specie ma, piuttosto, cambiano nelle loro quantità osservabili seguendo fasi ben precise che dipendono strettamente dalle caratteristiche fisiche della stella stessa. La nascita delle stelle è stata osservata con l'ausilio dei grandi telescopi di terra e soprattutto dei telescopi spaziali (in particolar modo Hubble e Spitzer). Le moderne tecniche di osservazione dello spazio nelle varie lunghezze d'onda dello spettro elettromagnetico, soprattutto nell'ultravioletto e nell'infrarosso, e l'importante contributo della radioastronomia, hanno permesso di individuare i luoghi di formazione stellare. Le stelle si formano all'interno delle nubi molecolari, delle regioni di gas ad "alta" densità 1 presenti nel mezzo interstellare, costituite essenzialmente da idrogeno, con una quantità di elio del 23-28% e tracce di elementi più pesanti. Le stelle più massicce che si formano al loro interno le illuminano e le ionizzano in maniera molto forte, creando le cosiddette regioni H II; un noto esempio di simili oggetti è la Nebulosa di Orione. La formazione di una stella ha inizio quando una nube molecolare inizia a manifestare fenomeni di instabilità gravitazionale, spesso innescati dalle onde d'urto di una supernova o della collisione tra due galassie. Non appena si raggiunge una densità della materia tale da soddisfare i criteri dell'instabilità di Jeans (che si instaura quando la pressione interna del gas non è in grado di contrastare il collasso gravitazionale cui va naturalmente incontro una nube ricca di materia), la regione inizia a collassare sotto la sua stessa gravità. Il graduale collasso della nube porta alla formazione di densi agglomerati di gas e polveri oscure, noti come globuli di Bok, che arrivano a contenere una quantità di materia pari ad oltre 50 masse solari (M☉). Mentre all'interno del globulo il collasso gravitazionale causa un incremento della densità materiale, l'energia potenziale gravitazionale viene convertita in energia termica, con un conseguente aumento della temperatura: si forma in tal modo una protostella, circondata da un disco che ha il compito di accrescerne la massa. 4 Il periodo in cui l'astro è soggetto al collasso, fino all'innesco, nelle parti centrali della protostella, delle reazioni di fusione dell'idrogeno in elio, è variabile. Una stella massiccia in formazione permane in questa fase per qualche centinaio di migliaia di anni, mentre per una stella di massa medio-piccola dura un periodo di circa 10-15 milioni di anni. Se possiede una massa inferiore a 0,08 M☉, la protostella non raggiunge l'ignizione delle reazioni nucleari e si trasforma in una fredda e poco brillante nana bruna; 6 se possiede una massa fino ad otto masse solari, si forma una stella pre-sequenza principale, spesso circondata da un disco protoplanetario; se la massa è superiore ad 8 M☉, la stella raggiunge direttamente la sequenza principale senza passare per questa fase. Le stelle pre-sequenza principale si dividono in due categorie: le stelle T Tauri (e FU Orionis), che hanno una massa non superiore a due masse solari, e le stelle Ae/Be di Herbig, con masse fino ad otto masse solari. Queste stelle sono però caratterizzate da forti instabilità e variabilità, poiché non si trovano ancora in una situazione di equilibrio idrostatico. Un fenomeno tipico della fase T Tauri sono gli oggetti di Herbig-Haro, caratteristiche nebulose a emissione originate dalla collisione tra i flussi molecolari in uscita dai poli stellari e il mezzo interstellare. Enigmatico è il meccanismo di formazione delle stelle massicce. Le stelle di classe B (≥9M☉), nel momento in cui al loro interno si innescano le reazioni nucleari, si trovano ancora nel pieno della fase di accrescimento, la quale sarebbe contrastata e frenata dalla radiazione prodotta dal giovane astro; tuttavia, come accade per le stelle meno massicce, sembra che si formino dei dischi associati a getti polari che permetterebbero all'accrescimento di proseguire. 5 Analogamente, per quanto riguarda le stelle di classe O (>15M☉), le reazioni subentrano durante la fase di accrescimento, la quale prosegue però grazie alla formazione di enormi strutture toroidali, fortemente instabili. Le stelle trascorrono circa il 90% della propria esistenza in una fase di stabilità durante la quale fondono l'idrogeno del proprio nucleo in elio a temperatura e pressione elevate; tale fase prende il nome di sequenza principale. In questa fase, ogni stella genera un vento di particelle cariche che provoca una continua fuoriuscita di materia nello spazio (che per gran parte delle stelle risulta irrisoria). Il Sole, ad esempio, perde, nel vento solare, 10−14 masse solari di materia all'anno, ma le stelle più massicce arrivano a perderne decisamente di più, sino a 10−7 - 10−5 masse solari all'anno; tale perdita può riflettersi in maniera sostanziale sull'evoluzione dell'astro. La durata della fase di sequenza principale dipende innanzi tutto dalla quantità di combustibile nucleare disponibile, quindi dalla velocità a cui esso è fuso; vale a dire, dalla massa iniziale e dalla luminosità della stella. La permanenza del Sole nella sequenza principale è stimata in circa 1010 anni. Le stelle più grandi consumano il proprio "carburante" piuttosto velocemente ed hanno una vita decisamente più breve (qualche decina o centinaio di milioni di anni); le stelle più piccole invece bruciano l'idrogeno del nucleo molto lentamente ed hanno un'esistenza molto più lunga (decine o centinaia di miliardi di anni). Oltre alla massa, un ruolo preminente nell'evoluzione dell'astro è rivestito dalla propria metallicità, che influenza la durata della sequenza principale, l'intensità del campo magnetico 11 e del vento stellare. Le vecchie stelle di popolazione II hanno una metallicità minore delle più giovani stelle di popolazione I, poiché le nubi molecolari da cui si sono formate queste ultime possedevano una maggiore quantità di metalli. La sequenza principale termina non appena l'idrogeno, contenuto nel nucleo della stella, è stato completamente convertito in elio dalla fusione nucleare; la successiva evoluzione della stella segue vie diverse a seconda della massa dell'oggetto celeste. Le stelle con masse comprese tra 0,08 e 0,4 masse solari, le nane rosse, si riscaldano mano a mano che l'idrogeno viene consumato al loro interno, accelerando la velocità delle reazioni nucleari e divenendo per breve tempo delle stelle azzurre; quando tutto l'idrogeno negli strati interni è stato convertito in elio, esse si contraggono gradualmente, diminuendo di luminosità ed evolvendo in nane bianche costituite prevalentemente da elio. Tuttavia, poiché la durata della sequenza principale per una stella di questo tipo è stata stimata sugli 80 miliardi - 1 bilione di anni e l'attuale età dell'universo si aggira sui 13,7 miliardi di anni, pare logico dedurne che nessuna nana rossa abbia ancora avuto il tempo di giungere al termine della sequenza principale. Le stelle la cui massa è compresa tra 0,8 ed 8 masse solari attraversano una fase di notevole instabilità alla fine della sequenza principale: il nucleo (core) subisce diversi collassi gravitazionali, incrementando la propria temperatura, mentre gli strati più esterni, in reazione al vasto surplus energetico che ricevono dal core in contrazione, 22 si espandono e si raffreddano, assumendo di conseguenza una colorazione via via sempre più tendente al rosso. 16 Ad un certo punto, l'energia sprigionata dal collasso gravitazionale permette allo strato di idrogeno immediatamente circostante il nucleo di raggiungere la temperatura di ignizione della fusione nucleare. A questo punto, la stella, dopo esser passata per la fase altamente instabile di subgigante, si trasforma in una fredda ma brillante gigante rossa con un nucleo inerte di elio e un guscio in cui prosegue la fusione dell'idrogeno e permane in questa fase per circa un miliardo di anni. Se la stella possiede una massa sufficiente (~ 1 M☉), una complessa serie di contrazioni e collassi gravitazionali provoca un forte innalzamento della temperatura nucleare sino ad oltre 100 milioni di kelvin, che segna il violento innesco (flash) della fusione dell'elio in carbonio e ossigeno tramite il processo tre alfa, mentre nel guscio immediatamente superiore continua il processo di fusione dell'idrogeno residuo in elio. La stella, raggiungendo questo stadio evolutivo, arriva ad un nuovo equilibrio e si contrae leggermente passando dal ramo delle giganti rosse al ramo orizzontale del diagramma H-R. Non appena l'elio è stato completamente esaurito all'interno del core, lo strato attiguo, che in precedenza ha fuso l'idrogeno in elio, inizia a fondere quest'ultimo in carbonio, mentre sopra di esso un altro strato continua a fondere parte dell'idrogeno restante in elio; la stella entra così nel ramo asintotico delle giganti (AGB, acronimo di Asymptotic Giant Branch). Gli strati più esterni di una gigante rossa o di una stella AGB possono estendersi per diverse centinaia di volte il diametro del Sole, arrivando ad avere raggi dell'ordine dei 108 km (alcune unità astronomiche), come nel caso di Mira (ο Ceti), una gigante del ramo asintotico con un raggio di 5 × 108 km (3 U.A.). Se la stella ha una massa sufficiente (non superiore ad 8-9 M☉ ), col tempo è possibile l'innesco anche della fusione di una parte del carbonio in ossigeno, neon e magnesio. Qualora la velocità delle reazioni nucleari subisca un rallentamento, la stella compensa questo deficit energetico contraendo le proprie dimensioni e riscaldando la propria superficie; a questo punto la stella attraversa una fase evolutivamente parallela a quella di gigante rossa, ma caratterizzata da una temperatura superficiale decisamente più elevata, che prende il nome di fase di gigante blu. 23 Quando termina il processo di fusione dell'idrogeno in elio ed inizia la conversione di quest'ultimo in carbonio, le stelle massicce (con massa superiore ad 8 M☉) si espandono raggiungendo lo stadio di supergigante rossa. Non appena si esaurisce anche la fusione dell'elio, i processi nucleari non si arrestano ma, complice una serie di successivi collassi del nucleo ed aumenti di temperatura e pressione, proseguono con la sintesi di altri elementi più pesanti: ossigeno, neon, silicio e zolfo. In tali stelle, poco prima della loro fine, può svolgersi in contemporanea la nucleosintesi di più elementi all'interno di un nucleo che appare stratificato; tale struttura è paragonata da molti astrofisici agli strati concentrici di una cipolla. In ciascun guscio avviene la fusione di un differente elemento: il più esterno fonde idrogeno in elio, quello immediatamente sotto fonde elio in carbonio e via dicendo, a temperature e pressioni sempre crescenti man mano che si procede verso il centro. Il collasso di ciascuno strato è sostanzialmente evitato dal calore e dalla pressione di radiazione dello strato sottostante, dove le reazioni procedono a un regime più intenso. Il prodotto finale della nucleosintesi è il nichel-56 (56Ni), risultato della fusione del silicio, che viene completata nel giro di pochi giorni. Il nichel-56 decade rapidamente in ferro-56 (56Fe). Poiché i nuclei del ferro possiedono un'energia di legame nettamente superiore a quella di qualunque altro elemento, la loro fusione, anziché essere un processo esotermico (che produce ed emette energia), è fortemente endotermica (cioè richiede e consuma energia). La supergigante rossa può anche attraversare uno stadio alternativo, che prende il nome di supergigante blu. Durante questa fase la fusione nucleare avviene in maniera più lenta; per via di tale rallentamento, l'astro si contrae e, poiché una grande quantità di energia viene emessa da una superficie fotosferica più piccola, la temperatura superficiale aumenta, donde il colore blu; l'astro tuttavia, prima di raggiungere questo stadio, passa per la fase di supergigante gialla, caratterizzata da una temperatura e da dimensioni intermedie rispetto alle due fasi. Una supergigante rossa può in qualunque momento, a patto che rallentino le reazioni nucleari, trasformarsi in una supergigante blu. Nelle stelle più massicce, ormai in una fase evolutiva avanzata, un grande nucleo di ferro inerte si deposita al centro dell'astro; in tali oggetti gli elementi più pesanti, spinti da moti convettivi, possono affiorare in superficie, formando degli oggetti molto evoluti noti come stelle di Wolf-Rayet, caratterizzate da forti venti stellari che provocano una consistente perdita di massa. 32 Quando una stella è prossima alla fine della propria esistenza, la pressione di radiazione del nucleo non è più in grado di contrastare la gravità degli strati più esterni dell'astro. Di conseguenza il nucleo va incontro ad un collasso, mentre gli strati più esterni vengono espulsi in maniera più o meno violenta; ciò che resta è un oggetto estremamente denso: una stella compatta, costituita da materia in uno stato altamente degenere. In seguito ai progressivi collassi e riscaldamenti susseguitisi durante le fasi sopra descritte, il nucleo della stella assume una configurazione degenere: 34 si forma in questo modo la nana bianca, un oggetto dalle dimensioni piuttosto piccole (paragonabili all'incirca a quelle della Terra) con una massa minore o uguale al limite di Chandrasekhar (1,44 masse solari). Quando nel nucleo cessa completamente la fusione del combustibile nucleare, la stella può seguire due diverse vie a seconda della massa. Se ha una massa compresa tra 0,08 e 0,5 masse solari, la stella morente dà luogo ad una nana bianca di elio senza alcuna fase intermedia, espellendo gli strati esterni sotto forma di vento stellare. Se invece la sua massa è compresa tra 0,5 ed 8 masse solari, si generano delle violente pulsazioni termiche all'interno dell'astro che causano l'espulsione dei suoi strati più esterni in una sorta di "supervento" che assorbe la radiazione ultravioletta emessa a seguito dell'alta temperatura degli strati interni dell'astro. Tale radiazione viene poi riemessa sotto forma di luce visibile dall'involucro dei gas, i quali vanno a costituire una nebulosità in espansione, la nebulosa protoplanetaria prima e planetaria poi, al cui centro rimane il cosiddetto nucleo della nebulosa planetaria (PNN, dall'inglese Planetary Nebula Nucleus), che diverrà poi la nana bianca. Una nana bianca appena formata ha una temperatura molto elevata, pari a circa 100-200 milioni di K, che diminuisce in funzione degli scambi termici con lo spazio circostante, finché l'oggetto non raggiunge lo stadio ultimo di nana nera. 37 Si tratta però di un modello teorico, poiché sino ad ora non è stata ancora osservata alcuna nana nera; perciò gli astronomi ritengono che il tempo previsto perché una nana bianca si raffreddi del tutto sia di gran lunga superiore all'attuale età dell'Universo. 34 Nelle stelle con masse superiori ad 8 masse solari, la fusione nucleare continua finché il nucleo non raggiunge una massa superiore al Limite di Chandrasekhar. Oltrepassato quest'ultimo, il nucleo non riesce più a tollerare la sua stessa massa e va incontro ad un improvviso e irreversibile collasso. Gli elettroni urtano contro i protoni dando origine a neutroni e neutrini assieme ad un forte decadimento beta ed a fenomeni di cattura elettronica. L'onda d'urto generata da questo improvviso collasso provoca la catastrofica esplosione della stella in una brillantissima supernova di tipo II o di tipo Ib o Ic, se si trattava di una stella particolarmente massiccia. Le supernovae hanno una luminosità tale da superare, anche se per breve tempo, la luminosità complessiva dell'intera galassia che le ospita. Le supernovae esplose in epoca storica nella Via Lattea furono osservate ad occhio nudo dagli uomini, che le ritenevano erroneamente delle "nuove stelle" (donde il termine nova, utilizzato inizialmente per designarle) che comparivano in regioni del cielo dove prima non sembravano essercene. L'energia liberata nell'esplosione è talmente elevata da consentire la fusione dei prodotti della nucleosintesi stellare in elementi ancora più pesanti, quali oro, magnesio ecc; questo fenomeno è detto nucleosintesi delle supernovae. L'esplosione della supernova diffonde nello spazio la gran parte della materia che costituiva la stella; tale materia forma il cosiddetto resto di supernova, mentre il nucleo residuo sopravvive in uno stato altamente degenere. Se la massa del residuo è compresa tra 1,4 e 3,8 masse solari, esso collassa in una stella di neutroni (che talvolta si manifesta come pulsar), che si configura stabile poiché il collasso gravitazionale, cui andrebbe naturalmente incontro, è contrastato dalla pressione del neutronio, la particolare materia degenere di cui tali oggetti sono costituiti. Tali oggetti hanno una densità elevatissima (circa 1017 kg/m3) e sono costituiti da neutroni, con una certa percentuale di materia esotica, principalmente materia di quark, presente probabilmente nel suo nucleo. Nel caso in cui la stella originaria sia talmente massiccia che il nucleo residuo mantiene una massa superiore a 3,8 masse solari (limite di Tolman-Oppenheimer-Volkoff), nessuna forza è in grado di contrastare il collasso gravitazionale ed il nucleo collassa fino a raggiungere dimensioni inferiori al raggio di Schwarzschild: si origina così un buco nero stellare. La materia costituente il buco nero si trova in un particolare stato, altamente degenere, che i fisici non sono ancora riusciti ad esplicare. Gli strati esterni della stella espulsi nella supernova contengono una grande quantità di elementi pesanti che possono essere reimpiegati in nuovi processi di formazione stellare; tali elementi possono anche permettere la formazione di sistemi extrasolari, che possono contenere, eventualmente, anche dei pianeti di tipo roccioso. Le esplosioni delle supernovae ed i venti delle stelle massicce svolgono un ruolo di primo piano nel plasmare le strutture del mezzo interstellare. La distinzione tra stelle nane e stelle giganti è una distinzione effettuata sulla base della loro classificazione spettrale, non sulla base delle loro dimensioni fisiche. Le stelle nane sono caratterizzate da una densità più elevata. Questa differenza si traduce nella maggiore larghezza delle righe del loro spettro e quindi in una classe di luminosità più bassa. Maggiore è la densità, maggiore è la larghezza delle righe. In ordine di densità decrescente e di luminosità crescente distinguiamo le seguenti classi di luminosità:

  • Subnane: classe di luminosità VI;
  • Nane: classe di luminosità V;
  • Subgiganti: classe di luminosità IV;
  • Giganti: classe di luminosità III;
  • Giganti brillanti: classe di luminosità II;
  • Supergiganti: classe di luminosità I.

Le nane rosse, le nane arancioni e le nane gialle sono effettivamente più piccole e deboli delle stelle giganti dei rispettivi colori perché hanno una superficie radiante proporzionalmente più piccola. Tuttavia per le stelle più massicce, di colore bianco, azzurro e blu, la differenza di taglia e di brillantezza fra le "nane" di sequenza principale e le "giganti" diventa sempre più piccola, finché per le stelle più calde diviene non più osservabile direttamente. Infine, le nane bianche non rientrano nella classificazione spettrale su data, pur essendo a volte classificate con classe di luminosità VII, perché così come le stelle di neutroni non sono classificabili come stelle, cioè come oggetti il cui equilibrio idrostatico è sorretto da una adeguata produzione di energia nucleare nelle regioni interne. Questo tipo di oggetti sono sorretti dalla elevatissima degenerazione del gas che le compone, non possono in nessun modo ospitare fenomeni di fusione nucleare. Sia le nane bianche che le stelle a neutroni appartengono alla classe di sorgenti note come oggetti compatti e rappresentano i resti di una porzione più o meno ampia del nucleo dei loro progenitori stellari.

A differenza degli ammassi aperti, la maggior parte degli ammassi globulari restano uniti gravitazionalmente per periodi che si estendono alla vita media della maggior parte delle stelle di cui sono formati (a parte alcune eccezioni dove intense interazioni mareali con oggetti di grande massa disperdono le stelle). La formazione di un ammasso globulare resta un fenomeno piuttosto misterioso. Gli studiosi non sono sicuri se le stelle si sono formate in una singola generazione, o si estendono per diverse generazioni in periodi di diverse centinaia di milioni di anni. Questo periodo di formazione stellare è tuttavia relativamente breve se paragonato all'età di molti ammassi. Le osservazioni mostrano che la formazione delle stelle degli ammassi globulari avviene innanzitutto in regioni dove questo fenomeno è molto elevato e dove il mezzo interstellare ha una densità maggiore rispetto alle regioni normali di formazione stellare. La formazione dei globulari avviene principalmente nelle regioni dette starburst e nelle galassie interagenti. Dopo la loro formazione, le stelle dei futuri ammassi iniziano ad interagire gravitazionalmente le une con le altre; di conseguenza, i vettori di velocità tra le stelle vengono modificati e non si riescono a ricostruire le loro velocità iniziali. L'intervallo caratteristico in cui avviene questa fase è chiamato tempo di rilassamento, che è legato al periodo di tempo proprio necessario ad una stella per attraversare l'ammasso e al numero di masse stellari del sistema. Il valore del tempo di rilassamento varia da ammasso ad ammasso, ma mediamente si aggira attorno al miliardo di anni. Anche se gli ammassi appaiono di forma generalmente sferica, attraverso interazioni gravitazionali possono anche assumere forma ellittica: gli ammassi all'interno della Via Lattea e della Galassia di Andromeda ad esempio hanno forma sferoidale schiacciata, mentre quelli nella Grande Nube di Magellano sono più ellittici. Gli astronomi caratterizzano la morfologia di un ammasso globulare utilizzando i raggi geometrici standard, che comprendono il raggio del nucleo (rc), il raggio di metà-luce (rh) e il raggio mareale (rt). La luminosità totale dell'ammasso decresce con la distanza dal nucleo, mentre il raggio del nucleo equivale alla distanza alla quale la luminosità superficiale apparente diminuisce di metà. Una quantità comparabile è il raggio di metà-luce, o la distanza dal nucleo alla quale viene ricevuta la metà della luminosità totale dell'ammasso. Tipicamente questo valore è più grande rispetto al raggio del nucleo. Il raggio di metà-luce include stelle che si trovano nella parte esterna dell'ammasso e giacciono lungo la linea di visuale, quindi gli studiosi utilizzano il raggio di metà-massa (rm), ossia il raggio che, partendo dal nucleo, contiene metà della massa totale dell'ammasso. Quando il raggio di metà massa di un ammasso globulare è piccolo in relazione alla sua massa totale, allora questo avrà un nucleo molto denso. Un esempio di tale ammasso è M3, che ha una dimensione visibile totale di 18 minuti d'arco, ma il raggio di metà massa è solo di 1,12 minuti d'arco. Gran parte degli ammassi globulari hanno il raggio di metà-luce inferiore ai 10 pc di lunghezza, sebbene siano comunque presenti ammassi con un raggio molto lungo, come per esempio NGC 2419 (Rh = 18 pc) e Palomar 14 (Rh = 25 pc). Infine, il raggio mareale è la distanza dal centro dell'ammasso oltre la quale le stelle subiscono una maggiore forza gravitazionale dalla galassia rispetto all'ammasso stesso; in altre parole, è la distanza alla quale le stelle singole possono essere separate dall'ammasso. Misurando la curva di luminosità di un dato ammasso globulare in funzione della distanza dal nucleo, si è scoperto che la maggior parte dei globulari all'interno della Via Lattea aumenta costantemente di luminosità man mano che la distanza decresce fino ad una certa distanza dal nucleo, dove scende a zero. Tipicamente questa distanza varia da 1 a 2 parsec. Tuttavia, circa il 20% degli ammassi conosciuti hanno subito un processo chiamato "collasso del nucleo": in questi casi la luminosità continua a crescere costantemente fino alla regione del nucleo. M15 è un ammasso globulare che ha subito il processo di collasso del nucleo. Si pensa che questo processo accada quando le stelle più massicce incontrano altre stelle più piccole. La conseguenza di questi incontri è che le stelle più grandi tendono a perdere la loro energia cinetica e iniziano a dirigersi verso il nucleo; dopo un lungo periodo di tempo si ha una massiccia concentrazione di stelle vicino al nucleo, e questo fenomeno viene detto segregazione di massa. Attraverso il telescopio Hubble si sono cercate prove osservative di questo processo di separazione della massa negli ammassi globulari. Le stelle più pesanti discendono e si affollano nel nucleo, mentre quelle più leggere aumentano di velocità e tendono ad allontanarsi verso la periferia. L'ammasso 47 Tucanae, costituito da 1 milione di stelle, è uno degli ammassi più densi, visibile nell'emisfero meridionale. Un'intensa campagna di osservazione fotografica ha permesso agli astronomi di tracciare il moto delle sue stelle. Per 15.000 di esse è stata calcolata la velocità. I differenti stadi del collasso possono essere in tre fasi: durante la fase giovanile dell'ammasso, il processo di collasso inizia con le stelle nei pressi del nucleo, sebbene le interazioni tra le stelle doppie impediscano nuovi collassi con l'avanzare dell'età. Infine le stelle doppie del centro vengono sciolte dal loro legame o espulse, causando una concentrazione ancora più stretta nel nucleo dell'ammasso. Uno studio condotto dal Dr. J. Fregeau nel 2008 su 13 ammassi globulari della Via Lattea mostra che tre di questi posseggono al loro interno un insolitamente alto numero di sorgenti di raggi X, o anche binarie a raggi X, che suggeriscono che l'ammasso sia nella fase centrale della sua vita. In precedenza, quegli ammassi globulari erano stati classificati come molto antichi, a causa della loro stretta concentrazione di stelle nei loro centri (quest'ultimo è un altro modo per identificare le età degli ammassi globulari). Questo fatto implica che questi ammassi si trovano in una fase relativamente giovanile, e non in una fase adulta, come spiegato prima. La luminosità totale degli ammassi globulari nella Via Lattea e nella Galassia di Andromeda può essere modellata da una curva gaussiana, considerando la magnitudine media Mv e la varianza σ2. La distribuzione della luminosità degli ammassi globulari nella Via Lattea ha i seguenti parametri Mv = −7,20±0,13, σ=1,1±0,1. Inoltre, la distribuzione è stata utilizzata per la misurazione delle distanze delle altre galassie, ipotizzando che gli ammassi globulari presenti nelle galassie remote seguano gli stessi principi di quelli della Via Lattea. Il calcolo delle interazioni tra le stelle all'interno di un ammasso richiede la soluzione del cosiddetto problema degli n-corpi; infatti ogni stella all'interno dell'ammasso interagisce continuamente con le altre N-1 stelle, dove N è il numero totale delle stelle. Il costo computazionale per i calcoli è dell'ordine (usando la notazione O-grande) On3, ovvero cresce con il cubo del numero N dei corpi, quindi quando si cerca di calcolare la soluzione, al crescere di N, il numero dei calcoli necessari cresce al cubo, raggiungendo molto velocemente numeri impraticabili. Un metodo efficiente per risolvere questo problema consiste nella simulazione matematica dell'ammasso, suddividendolo in piccoli volumi e usando le probabilità per descrivere la posizione delle stelle. I moti sono quindi descritti usando l'equazione di Fokker-Planck, che viene risolta in forma semplificata o attraverso il metodo Monte Carlo. La simulazione si complica quando si devono includere gli effetti delle stelle binarie e le interazioni con forze gravitazionali esterne (come la Via Lattea). I risultati delle simulazioni hanno mostrato che le stelle possono seguire percorsi insoliti attraverso l'ammasso, spesso formando cicli o cadendo direttamente verso il nucleo, rispetto al percorso di una singola stella che orbita attorno ad una massa centrale. Inoltre, a causa delle interazioni con le altre stelle che aumentano la velocità, alcune di esse possono guadagnare sufficiente energia per sfuggire all'attrazione centrale e fuoriuscire dall'ammasso. In lunghi periodi di tempo, questi effetti causano la dissipazione dell'ammasso, fenomeno che viene chiamato evaporazione. Il periodo di tempo necessario per l'evaporazione di un ammasso è dell'ordine delle decine di miliardi di anni (1010 anni). Le stelle binarie costituiscono una porzione significativa della popolazione totale dei sistemi stellari (si stima che circa la metà delle stelle sia inserita in un sistema binario). Le simulazioni numeriche degli ammassi hanno dimostrato che le stelle binarie possono ostacolare e addirittura invertire il processo di collasso del nucleo. Quando una stella ha un incontro con un sistema binario è infatti possibile che quest'ultimo diventi maggiormente legato gravitazionalmente e l'energia cinetica venga acquistata dalla stella singola. Quando le stelle massicce sono accelerate da questo processo, può diminuire la contrazione del nucleo o limitare il suo collasso. La distinzione tra i tipi di ammassi non è sempre netta e sono stati trovati oggetti che hanno caratteristiche appartenenti a due categorie. Ad esempio BH 176 si trova nella parte sud della Via Lattea ed ha le proprietà sia degli ammassi aperti che degli ammassi globulari. Nel 2005 gli astronomi scoprirono un tipo completamente nuovo di ammasso stellare nella Galassia di Andromeda, che è per alcuni aspetti molto simile agli ammassi globulari. Questi ammassi possono contenere centinaia di migliaia di stelle, come negli ammassi globulari e similmente hanno medesime popolazioni stellari e valori di metallicità, mentre hanno dimensioni molto più estese (diverse centinaia di anni luce) e una densità molto inferiore. Le distanze tra le stelle sono quindi molto maggiori rispetto agli ammassi globulari. I meccanismi di formazione di questi ammassi non sono noti, ma potrebbero essere legati a quelli degli ammassi globulari; è anche sconosciuto il motivo per cui sono presenti nella galassia di Andromeda ma non nella Via Lattea, come anche se qualche altra galassia contenga questo tipo di ammassi (anche se è molto improbabile che solo la Galassia di Andromeda li contenga). Quando un ammasso ha un incontro ravvicinato con un oggetto che possiede una massa elevata, come la regione del nucleo galattico, subisce una interazione gravitazionale o di marea. Questo effetto crea delle scie di stelle che possono estendersi a diversi gradi d'arco dall'ammasso e che precedono o seguono quest'ultimo nella sua orbita. Le scie possono contenere frazioni significative della massa originale dell'ammasso e possono formare delle strutture tipo nugolo. L'ammasso Palomar 5, ad esempio, è vicino al punto perigalattico della sua orbita e flussi di stelle di estendono verso la parte anteriore e la parte posteriore del percorso orbitale, raggiungendo distanze di 13.000 al dall'ammasso. Queste interazioni hanno strappato via da questo ammasso molta massa, e si pensa che future interazioni potrebbero trasformarlo in una lunga scia di stelle che orbitano nell'alone galattico. Infatti questi fenomeni aumentano il tasso di evaporazione, riducendo la dimensione degli ammassi, non solo strappando via le stelle esterne, ma accelerando il processo di collasso del nucleo. Lo stesso meccanismo potrebbe essere in atto nelle galassie nane sferoidali come la Nana del Sagittario, che appare in via di disgregazione a causa della sua vicinanza alla Via Lattea.


Crea il tuo sito web gratis! Questo sito è stato creato con Webnode. Crea il tuo sito gratuito oggi stesso! Inizia