Super ammassi galattici: le più grandi strutture del cosmo

In questo nuovissimo articolo parleremo delle strutture più grandi del cosmo: i Superammassi galattici. Curiosi di sapere cosa sono? Allora seguiteci su Eagle sera ma...Attenzione: sarà un viaggio lungo, più lontano che mai.


Galassia

Iniziamo dando una definizione di galassia. Una galassia è un grande insieme di stelle, sistemi, ammassi ed associazioni stellari, gas e polveri (che formano il mezzo interstellare), legati dalla reciproca forza di gravità. Il nome deriva dal greco γαλαξίας (galaxìas) , che significa "di latte, latteo"; è una chiara allusione alla Via Lattea, la Galassia per eccellenza, di cui fa parte il sistema solare. Le galassie sono oggetti dalle vastissime dimensioni; variano dalle più piccole galassie nane, contenenti poche centinaia di milioni di stelle, alle galassie giganti, che hanno anche mille miliardi di stelle, orbitanti attorno ad un comune centro di massa. Le galassie sono state categorizzate secondo la loro forma apparente, ossia sulla base della loro morfologia visuale. Una tipologia molto diffusa è quella ellittica, che, come si può ben arguire dal nome, ha un profilo ad ellisse. Le galassie spirale possiedono invece una forma discoidale con delle strutture spiraliformi che si dipartono dal nucleo. Le galassie con forma irregolare o insolita sono dette galassie peculiari; la loro strana forma è solitamente il risultato degli effetti delle interazioni mareali con le galassie vicine. Se tali interazioni sono particolarmente intense, a causa della grande vicinanza tra le strutture galattiche, può aver luogo la fusione delle due galassie, che risulta nella formazione di una galassia irregolare. La collisione tra due galassie dà spesso origine ad intensi fenomeni di formazione stellare (in gergo starburst). Nell'universo osservabile sono presenti probabilmente più di 100 miliardi di galassie; secondo nuove ricerche, tuttavia, il numero stimato di galassie nell'universo risulterebbe più alto di almeno dieci volte e oltre il 90% delle galassie nell'universo osservabile risulterebbe non rilevabile con i telescopi di cui disponiamo oggi, ancora troppo poco potenti. Gran parte di esse ha un diametro compreso fra 1000 e 100.000 parsec e sono di solito separate da distanze dell'ordine di milioni di parsec (megaparsec, Mpc). Lo spazio intergalattico è parzialmente colmato da un tenue gas, la cui densità è inferiore ad un atomo al metro cubo. Nella maggior parte dei casi le galassie sono disposte nell'Universo organizzate secondo precise gerarchie associative, dalle più piccole associazioni, formate da alcune galassie, agli ammassi, che possono essere formati anche da migliaia di galassie. Tali strutture, a loro volta, si associano nei più imponenti superammassi galattici. Queste grandi strutture sono di solito disposte all'interno di enormi correnti (come la cosiddetta Grande Muraglia) e filamenti, che circondano immensi vuoti dell'Universo. Sebbene non sia ancora del tutto ben chiaro, la materia oscura sembra costituire circa il 90% della massa di gran parte delle galassie a spirale, mentre per le galassie ellittiche si ritiene che questa percentuale sia minore, variando fra lo 0 e circa il 50%. I dati provenienti dalle osservazioni inducono a pensare che al centro di molte galassie, sebbene non di tutte, esistano dei buchi neri supermassicci; la presenza di questi singolari oggetti spiegherebbe l'attività del nucleo delle galassie cosiddette attive. Tuttavia la loro presenza non implica necessariamente che la galassia che li ospiti sia attiva, dato che anche la Via Lattea molto probabilmente nasconde nel suo nucleo un buco nero massivo di nome Sagittarius A*. L'osservazione amatoriale delle galassie, rispetto ad altri oggetti del profondo cielo, è resa difficoltosa da due fattori principali: A) la grandissima distanza che ci separa da esse, che fa in modo che solo le più vicine siano visibili con relativa facilità, quindi la loro luminosità superficiale, in genere molto debole. B) molte delle galassie più vicine a noi sono galassie nane di piccole dimensioni, formate solo da alcuni milioni di stelle, visibili solo con un potente telescopio (e non è un caso che molte di queste siano state scoperte solo in tempi recenti). Oltre alla Via Lattea, la galassia all'interno della quale si trova il nostro sistema solare, solo altre tre sono visibili ad occhio nudo: le Nubi di Magellano (Grande e Piccola Nube di Magellano), visibili solamente dall'emisfero australe del nostro pianeta, si presentano come macchie irregolari, quasi dei frammenti staccati della Via Lattea, la cui scia luminosa corre a breve distanza; si tratta di due galassie molto vicine, orbitanti attorno alla nostra; tra le galassie giganti invece, l'unica visibile ad occhio nudo è la Galassia di Andromeda, osservabile principalmente dall'emisfero boreale terrestre. È la galassia gigante più vicina a noi e anche l'oggetto più lontano visibile ad occhio nudo: si presenta come un alone chiaro allungato, privo di dettagli. La Galassia del Triangolo, una galassia spirale di medie dimensioni poco più lontana di Andromeda, risulta già invisibile ad occhio nudo, rivelandosi solo con un binocolo nelle notti più limpide. Tra le galassie prossime al nostro Gruppo Locale alcune degne di nota sono in direzione della costellazione dell'Orsa Maggiore (M82 e M81), ma già sono visibili solo con un telescopio amatoriale. Dopo la scoperta, nei primi decenni del XX secolo, che le cosiddette nebulose spiraliformi erano entità distinte (chiamate galassie o universi-isola) dalla Via Lattea, si sono condotte numerose osservazioni volte a studiare tali oggetti, principalmente alle lunghezze d'onda della luce visibile. Il picco di radiazione di gran parte delle stelle, infatti, ricade entro questo range; pertanto l'osservazione delle stelle che formano le galassie costituiva la quasi totalità dell'astronomia ottica. Alle lunghezze d'onda del visibile è possibile osservare in maniera ottimale le regioni H II (costituite da gas ionizzato), allo scopo di esaminare la distribuzione delle polveri all'interno dei bracci delle galassie a spirale. La polvere cosmica, presente nel mezzo interstellare, è però opaca alla luce visibile, mentre risulta già più trasparente all'infrarosso lontano, utilizzato per osservare nel dettaglio le regioni interne delle nubi molecolari giganti, sede di intensa formazione stellare, ed i centri galattici. Gli infrarossi sono anche utilizzati per osservare le galassie più lontane, che mostrano un alto spostamento verso il rosso; esse ci appaiono come dovevano presentarsi poco dopo la loro formazione, nei primi stadi dell'evoluzione dell'Universo. Tuttavia, poiché il vapore acqueo e il diossido di carbonio della nostra atmosfera assorbono una parte rilevante della porzione utile dello spettro infrarosso, per le osservazioni nell'infrarosso sono usati solamente telescopi ad alta quota o in orbita nello spazio. Il primo studio sulle galassie, in particolare su quelle attive, non basato sulle frequenze del visibile fu condotto tramite le radiofrequenze; l'atmosfera è infatti quasi totalmente trasparente alle onde radio di frequenza compresa fra 5 MHz e 30 GHz (la ionosfera blocca i segnali al di sotto di questa fascia). Grandi radiointerferometri sono stati usati per mappare i getti emessi dai nuclei delle galassie attive. I radiotelescopi sono in grado di osservare l'idrogeno neutro, includendo, potenzialmente, anche la materia non ionizzata dell'Universo primordiale collassata in seguito nelle galassie. I telescopi a raggi X e ad ultravioletti possono inoltre osservare fenomeni galattici altamente energetici. Un intenso brillamento (flare) agli ultravioletti fu osservato nel 2006 mentre una stella di una galassia distante era catturata dal forte campo gravitazionale di un buco nero. La distribuzione del gas caldo negli ammassi galattici può essere mappata attraverso i raggi X; infine, l'esistenza dei buchi neri supermassicci nei nuclei delle galassie fu confermata proprio attraverso l'astronomia a raggi X. La scoperta che il Sole è all'interno di una galassia, e che vi sono innumerevoli altre galassie, è strettamente legata alla scoperta della vera natura della Via Lattea. Prima dell'avvento del telescopio, oggetti lontani come le galassie erano del tutto sconosciuti, data la loro bassa luminosità e la grande distanza. Alle civiltà classiche poteva essere nota soltanto una macchia chiara in direzione della costellazione di Andromeda (quella che fu per lungo tempo chiamata "Grande Nube di Andromeda"), visibile senza difficoltà ad occhio nudo, ma la cui natura era del tutto ignota. Le due Nubi di Magellano, le altre galassie visibili ad occhio nudo, possedevano una declinazione troppo meridionale perché potessero essere osservate dalle latitudini temperate boreali. Furono sicuramente osservate dalle popolazioni dell'emisfero sud, ma da parte loro ci sono giunti pochi riferimenti scritti. Il primo tentativo di catalogare quelli che allora erano chiamati "oggetti nebulosi" risale all'inizio del XVII secolo, ad opera del siciliano Giovan Battista Odierna, che inserì nel suo catalogo De Admirandis Coeli Characteribus del 1654 anche alcune di quelle che in seguito sarebbero state chiamate "galassie". Verso la fine del XVIII secolo, l'astronomo francese Charles Messier compilò un catalogo delle 109 nebulose più luminose, seguito poco dopo da un catalogo, che comprendeva altre 5000 nebulose, stilato dall'inglese William Herschel. Herschel fu inoltre il primo a tentare di descrivere la forma della Via Lattea e la posizione del Sole al suo interno; nel 1785 compì un conteggio scrupoloso del numero di stelle in seicento regioni differenti del cielo dell'emisfero boreale; egli notò che la densità stellare aumentava man mano che ci si avvicinava ad una determinata zona del cielo, coincidente col centro della Via Lattea, nella costellazione del Sagittario. Suo figlio John ripeté poi le misurazioni nell'emisfero meridionale, giungendo alle stesse conclusioni. Herschel senior disegnò poi un diagramma della forma della Galassia, considerando però erroneamente il Sole nei pressi del suo centro. Nel 1845, William Parsons costruì un nuovo telescopio che gli permise di distinguere le galassie ellittiche da quelle spirali; riuscì inoltre a distinguere sorgenti puntiformi di luce (ovvero delle stelle) in alcune di queste nebulose, dando credito all'ipotesi del filosofo tedesco Immanuel Kant, che riteneva che alcune nebulose fossero in realtà galassie distinte dalla Via Lattea. Nonostante questo, le galassie non furono universalmente accettate come entità separate dalla Via Lattea finché Edwin Hubble non risolse definitivamente la questione nei primi anni venti del XX secolo. Lo schema classificativo della Sequenza di Hubble si basa sulla morfologia visuale delle galassie; esse si suddividono in tre tipi principali: ellittiche, spirali e irregolari. Dato che tale sequenza si basa esclusivamente su osservazioni di tipo prettamente morfologico visivo, essa non tiene in considerazione alcune delle caratteristiche più importanti delle galassie, quali il tasso di formazione stellare delle galassie starburst e l'attività nel nucleo delle galassie attive. Il sistema di classificazione di Hubble considera le galassie come "ellittiche" (indicate dalla lettera "E") in base alla loro ellitticità, ossia alla loro apparenza sferica più o meno allungata; la scala di misura parte dalla classe E0, indicante le galassie di aspetto quasi sferico, alla classe E7, fortemente allungate. Queste galassie hanno un profilo ellissoidale, che conferisce loro un'apparenza più o meno ellittica a seconda dell'angolo di visuale. All'apparenza mostrano pochi dettagli e in genere possiedono al loro interno una quantità relativamente bassa di materia interstellare. Di conseguenza queste galassie possiedono un numero esiguo di ammassi aperti e un tasso ridotto di formazione stellare; sono formate anzi da stelle generalmente piuttosto vecchie ed evolute, orbitanti attorno ad un centro comune di gravità secondo direzioni casuali. Tali caratteristiche le rendono in parte simili ai ben più piccoli ammassi globulari. Le galassie più imponenti sono dette ellittiche giganti. Si pensa che molte galassie ellittiche si siano formate a causa di interazioni fra galassie, che terminano nella collisione e nella successiva fusione dell'una nell'altra; come conseguenza di ciò possono crescere di dimensioni fino a raggiungere il diametro delle galassie spirali, ma con un numero di stelle decisamente superiore. Le galassie ellittiche giganti sono spesso presenti al centro di grandi ammassi di galassie, di cui spesso costituiscono i componenti più massicci, dove le interazioni tra singole galassie possono avvenire più frequentemente. Le galassie starburst sono il risultato di collisioni galattiche che possono dar luogo ad una galassia ellittica. Le galassie spirali consistono in un disco di stelle e materia interstellare rotante attorno ad un centro, simile per composizione e caratteristiche ad una galassia ellittica, in quanto è composto da stelle generalmente di età avanzata. All'esterno del centro, chiamato bulge (o rigonfiamento centrale), si trovano i bracci di spirale, relativamente luminosi. Nello schema di classificazione di Hubble, le galassie spirali sono indicate con la lettera S, seguita dalle lettere minuscole a, b o c, che indicano il grado di spessore dei bracci di spirale e la dimensione del bulge centrale. Una galassia di tipo Sa possiede dei bracci molto ben avvolti e poco definiti ed un nucleo centrale relativamente grande; viceversa, un galassia di tipo Sc ha dei bracci ben definiti ed un rigonfiamento centrale molto ridotto. Nelle galassie a spirale i bracci hanno un andamento simile a quello di una spirale logaritmica, una figura che si può teoricamente mostrare come risultato di un disturbo nella rotazione uniforme della massa di stelle. Come le stelle, i bracci di spirale ruotano attorno al centro, ma con una velocità angolare che varia da punto a punto: questo significa che le stelle transitano all'interno e all'esterno dei bracci di spirale, e la loro velocità di rivoluzione diminuisce nelle stelle che si trovano nelle regioni esterne ai bracci, mentre è più rapida per le stelle che vi si trovano all'interno. Si pensa che i bracci di spirale siano delle aree ad alta densità di materia, o meglio delle onde di densità. Come le stelle si muovono attraverso il braccio, la velocità spaziale di ciascuna di esse viene modificata dalle forze gravitazionali della densità più elevata; questa velocità ridiminuisce come le stelle riescono dal braccio di spirale. Questo effetto ad "onda" può essere paragonato ad un punto di traffico intenso di un'autostrada, con le auto costrette a rallentare in determinati punti. I bracci di fatto sono visibili a causa della loro alta densità, che facilita per altro la formazione stellare, e spesso nascondono al loro interno stelle giovani e luminose. Le galassie cosiddette peculiari sono formazioni che sviluppano proprietà insolite, dovute all'interazione e alle forze mareali di altre galassie. Un esempio di questa classe di oggetti è la galassia ad anello, che possiede una struttura anulare di stelle e mezzo interstellare che circonda una barra centrale. Si pensa che una galassia ad anello si possa formare qualora una galassia più piccola passi attraverso il nucleo di una galassia spirale. Probabilmente un evento come questo si è verificato nella Galassia di Andromeda, la quale, se osservata nell'infrarosso, mostra una struttura ad anello multipla. Una galassia lenticolare è invece una forma intermedia che ha sia le proprietà delle galassie ellittiche sia quelle delle galassie spirali. Sono classificate secondo la sequenza di Hubble con la sigla S0 e possiedono dei bracci di spirale non definiti, con un alone ellittico di stelle. In aggiunta a queste due classi esiste una grande varietà di galassie che non possono essere classificate né come ellittiche, né come spirali: di solito ci si riferisce a queste galassie con l'appellativo di galassie irregolari. Una galassia Irr-I possiede alcune strutture che non possono allinearsi con lo schema di Hubble; una galassia Irr-II invece non possiede neppure una struttura che ricordi la sequenza di Hubble, perché potrebbero essere state distrutte da diverse interazioni. Un esempio di galassie irregolari vicine alla nostra Galassia sono le due Nubi di Magellano. Nonostante l'apparente prevalenza delle grandi galassie ellittiche o a spirale, la gran parte delle galassie dell'Universo sono in realtà delle galassie nane; queste deboli galassie possiedono circa un centesimo del diametro della Via Lattea e contengono al massimo appena qualche miliardo di stelle. Molte galassie nane orbitano come satelliti attorno ad una singola grande galassia; la Via Lattea, ad esempio, possiede poco meno di una ventina di galassie satelliti, ma secondo alcuni studi ne esisterebbero altre ancora da scoprire; alcune ipotesi suggeriscono che il loro numero possa aggirarsi sui 300 - 500. Le galassie nane sono a loro volta classificate come ellittiche, spirali ed irregolari. Dato che le galassie nane ellittiche spesso mostrano somiglianze con le galassie ellittiche giganti, sono spesso chiamate galassie nane sferoidali.

Clicca sul bottone sottostante per vedere un video sulle galassie.

Curiosità: Etimologia

 L'origine della Via Lattea di Jacopo Tintoretto.
L'origine della Via Lattea di Jacopo Tintoretto.

La parola "galassia" deriva dal termine greco che indicava la Via Lattea, Γαλαξίας (Galaxìas) per l'appunto, che significa "latteo", o anche κύκλος γαλακτικός (kyklos galaktikòs), col significato di "circolo galattico". Il nome deriva da un episodio piuttosto noto della mitologia greca. Zeus, invaghitosi di Alcmena, dopo avere assunto le fattezze del marito, il re di Trezene Anfitrione, ebbe un rapporto con lei, che rimase incinta. Dal rapporto nacque Eracle, che Zeus decise di porre, appena nato, nel seno della sua consorte Era mentre lei era addormentata, cosicché il bambino potesse bere il suo latte divino per diventare immortale. Era si svegliò durante l'allattamento e si rese conto che stava nutrendo un bambino sconosciuto: respinse allora il bambino e il latte, sprizzato dalle mammelle, schizzò via, andando a bagnare il cielo notturno; si sarebbe formata in questo modo, secondo gli antichi Greci, la banda chiara di luce nota come "Via Lattea". Quando William Herschel compilò il suo catalogo degli oggetti del cielo profondo, usò la locuzione nebulosa spirale per descrivere le caratteristiche di alcuni oggetti di aspetto nebuloso, come la Galassia di Andromeda; queste "nebulose" furono in seguito riconosciute, quando si iniziò a scoprirne la distanza, come immensi agglomerati di stelle estranei alla Via Lattea; ebbe così origine la teoria degli "universi-isola". Tuttavia, tale teoria cadde presto in disuso, poiché per "Universo" si intendeva la totalità dello spazio, con all'interno tutti gli oggetti osservabili, così si preferì adottare il termine galassia. Di fatto, da un punto di vista strettamente etimologico, per ironia della sorte i termini "galassia" e "Via Lattea" sono sinonimi.

L'Università del New Mexico, dove sono stati fatti interessanti studi sulle galassie.

Galleria fotografica:  the Galaxies

La Metallicità

In modo simile, le galassie più grandi tendono ad avere metallicità più alte. Nel caso delle Nubi di Magellano, due piccole galassie irregolari che orbitano attorno alla Via Lattea, la Grande Nube di Magellano ha una metallicità di circa il 40% del valore galattico, mentre la Piccola Nube di Magellano ha una metallicità approssimativa del 10%. Di solito il valore della metallicità si ottiene utilizzando come misura primaria l'abbondanza di elementi metallici del Sole. Tale misura non è di carattere assoluta ma relativa. Le linee di assorbimento che si osservano sono quelle dell'idrogeno e del ferro. La metallicità del Sole è di un 1,6% della massa. L'indice di metallicità si ottiene dal rapporto Fe/H che rappresenta il logaritmo del quoziente tra l'abbondanza di metalli nella stella e l'abbondanza solare.

In astronomia, la metallicità di un oggetto è la quantità adimensionale indicante la frazione in massa di elementi di materia diversi da idrogeno o elio. Tutti gli elementi più pesanti sono definiti in astronomia metalli. La metallicità di un oggetto può fornire indicazioni sulla sua età. Secondo le attuali teorie cosmologiche, quando l'universo si formò, era composto quasi completamente da idrogeno ed elio, e così le stelle più vecchie (quelle di popolazione II e di popolazione III) hanno metallicità molto basse. Crescendo l'età dell'universo cresce anche il contenuto di metalli, a causa della nucleosintesi stellare e dell'arricchimento di metalli che il mezzo interstellare subisce attraverso le nebulose planetarie e le supernovae. Nella galassia, la metallicità è più alta nel centro e più bassa all'esterno. Questo perché verso il centro della galassia ci sono molte più stelle, e durante la propria esistenza più metalli sono ritornati al mezzo interstellare.

In modo simile, le galassie più grandi tendono ad avere metallicità più alte. Nel caso delle Nubi di Magellano, due piccole galassie irregolari che orbitano attorno alla Via Lattea, la Grande Nube di Magellano ha una metallicità di circa il 40% del valore galattico, mentre la Piccola Nube di Magellano ha una metallicità approssimativa del 10%. Di solito il valore della metallicità si ottiene utilizzando come misura primaria l'abbondanza di elementi metallici del Sole. Tale misura non è di carattere assoluta ma relativa. Le linee di assorbimento che si osservano sono quelle dell'idrogeno e del ferro. La metallicità del Sole è di un 1,6% della massa. L'indice di metallicità si ottiene dal rapporto Fe/H che rappresenta il logaritmo del quoziente tra l'abbondanza di metalli nella stella e l'abbondanza solare.

Barra delle equazioni per i lettori più curiosi

Questa la formula relativa ai passaggi descritti:

dove ab è il valore dell'abbondanza di ferro (Fe) o idrogeno (H) a seconda del caso. L'indice di metallicità del Sole sarà

Gli oggetti con meno metalli del Sole possiedono un indice di metallicità negativo mentre gli altri oggetti ricchi in metalli possiedono un indice positivo. Poiché la scala è logaritmica, una metallicità di "-1" equivale a una abbondanza dieci volte minore a quella del Sole, "-2" ad una abbondanza cento volte minore a quella solare e così via. Analogamente, un indice di valore "+1" corrisponde ad una abbondanza dieci volte maggiore, "+2" cento volte maggiore e così via.

Per le altre stelle della galassia, la metallicità è espressa come [Fe/H], che rappresenta il logaritmo del rapporto dell'abbondanza di ferro della stella rispetto a quella del Sole. La metallicità di una stella si misura dallo spettro di assorbimento degli elementi contenuti nell'atmosfera stellare. Esistono vari formalismi matematici per esprimere la metallicità:

  • La metallicità in funzione della massa

X --> Funzione della massa di HY --> Funzione della massa di HeZ --> Funzione della massa dei "metalli"Dove si verifica che: {\displaystyle X+Y+Z=1}Composizione primordiale : X=0,76 Y=0,24 Z=0,00Composizione solare: X=0,70 Y=0,28 Z=0,02Si noti che la metallicità si può anche esprimere in funzione del numero di atomi, nel quale caso si ottengono valori maggiori per l'idrogeno e minori per l'elio e i metalli.


Superammasso

Dopo aver "ripassato" la definizione di galassia, passiamo ad analizzare le strutture protagoniste di questo articolo: i Superammassi galattici. I Superammassi sono grandi agglomerati di ammassi e gruppi di galassie e sono tra le più grandi strutture conosciute dell'Universo. La Via Lattea è situata nel Gruppo Locale e, insieme ad altri gruppi ed ammassi, costituisce il Superammasso della Vergine. Quest'ultimo, con altri superammassi, confluisce a formare il Superammasso Laniakea, una superstruttura che si estende per oltre 500 milioni di anni luce (in confronto il Gruppo Locale ha un'ampiezza di soli 10 milioni di anni luce). Il Superammasso Laniakea è a sua volta compreso in una struttura ancor più grande chiamata Complesso di Superammassi dei Pesci-Balena, una delle più grandi strutture conosciute dell'universo osservabile. Quindi le galassie sono raggruppate in strutture che seguono un ordine gerarchico: gruppi, ammassi, superammassi invece di essere dispersi in modo casuale. Ammassi di galassie sono raggruppati insieme per formare superammassi, talora possono essere formati da gruppi di ammassi chiamate nubi di galassie: I superammassi mediamente sono raccolti in uno spazio del diametro di circa 150 milioni di anni luce. A differenza degli ammassi, i superammassi non sono tenuti insieme dalla forza di gravità ma si muovono a causa del flusso di Hubble. La nostra galassia fa parte del Gruppo Locale, che è un ammasso modesto ed irregolare. Cluster poveri possono contenere solo poche decine di galassie rispetto ai cluster ricchi che possono contenerne centinaia o addirittura migliaia. Il Gruppo Locale si trova vicino al Superammasso Locale (noto anche come Superammasso della Vergine), che ha un diametro di 100 milioni di anni luce. Il Superammasso Locale contiene un totale di circa 1015 masse solari. Il più grande ammasso dell'Universo locale è chiamato il Grande Attrattore la cui gravità è così forte che il Superammasso locale, tra cui la Via Lattea, si sta muovendo nella sua direzione alla velocità di diverse centinaia di chilometri al secondo. Tra le grandi strutture oltre il nostro universo locale è il Filamento di Perseo-Pegaso, che contiene il Superammasso di Perseo-Pesci e si estende per circa un miliardo di anni luce. Il Filamento di Perseo-Pegaso è stato scoperto da David Batuski e Jack Burns della New Mexico State University. Da tempo si indaga sul come siano disposti i superammassi nello spazio, approntando mappe accurate, anche tridimensionali, delle posizioni di milioni di galassie, calcolandone per ognuna la posizione ed il redshift. Le mappe hanno fatto comprendere come le galassie non seguano una distribuzione uniforme né casuale, ma si dispongono lungo strutture allungate, i filamenti galattici, che circoscrivono enormi vuoti, strutture spesso sferiche dove sono presenti pochissime tenui galassie o nubi d'idrogeno, mentre la maggior parte delle galassie si trovano nei filamenti intorno ai vuoti. In complesso l'aspetto è quello di una spugna, ove le cavità sono i vuoti e la struttura della spugna i filamenti e superammassi. I diametri dei superammassi variano tra i 100 ei 400 milioni di anni luce. L'esistenza dei superammassi fu postulata da George Abell nel suo Catalogo Abell degli ammassi di galassie compilato nel 1958. I superammassi formano strutture più grandi e complesse che comprendono i filamenti, i complessi di superammassi, i muri e i piani, che possono estendersi da diverse centinaia di milioni a 10 miliardi di anni luce, coprendo oltre il 5% dell'Universo osservabile. Lo studio dei superammassi dà indicazioni sugli eventi iniziali dell'universo, quando sono state gettate le basi per la loro formazione. L'osservazione delle direzioni degli assi di rotazione delle galassie all'interno dei superammassi può anche farci comprendere i processi di formazione delle galassie nelle fasi precoci della storia dell'universo.

Clicca sul pulsante sottostante per scaricare il nostro documento Excel sulle distanze dei super-ammassi vicini.

Clicca sul pulsante sottostante per scaricare il nostro documento Excel sulle distanze dei super-ammassi distanti

Clicca sul pulsante sottostante per scaricare il nostro documento Excel sulle distanze dei super-ammassi molto distanti

Clicca sul bottone sottostante per vedere il nostro video sui superammassi cosmici.