Storiche sonde spaziali

L'uomo sogna da sempre di raggiungere le stelle, ma, per le nostre attuali capacità tecnologiche, inviare anche un solo uomo oltre l'orbita lunare è un'impresa titanica e costosissima. Fortunatamente, esistono degli "esploratori" che non necessitano di ossigeno, acqua o aria: sono le sonde spaziali, che ci hanno aperto nuove porte nell'esplorazione del cosmo. Seguici su Eagle sera per saperne di più.



Voyager

La sonda spaziale Voyager 1 è una delle prime esploratrici del sistema solare esterno, tuttora in attività benché abbia raggiunto l'eliopausa. Il lancio è avvenuto nell'ambito del Programma Voyager della NASA il 5 settembre 1977 da Cape Canaveral a bordo di un razzo Titan IIIE, pochi giorni dopo la sua sonda gemella Voyager 2, in un'orbita che le avrebbe permesso di raggiungere Giove per prima. Obiettivo principale della missione era il sorvolo dei due pianeti giganti Giove e Saturno, e in particolare del satellite Titano, per studiarne i campi magnetici, gli anelli e fotografarne i rispettivi satelliti. Dopo il sorvolo di Saturno nel 1980 la missione della sonda è stata estesa proseguendo così a raccogliere dati sulle regioni esterne del sistema solare. Nell'agosto del 2012 la Voyager 1 ha oltrepassato l'eliopausa diventando il primo oggetto costruito dall'uomo ad uscire nello spazio interstellare. La sonda sta operando e comunicando dati da più di 43 anni e 1 mese e si trova alla distanza di oltre 150 UA (22 miliardi e 550 milioni di km) dal Sole, facendone l'oggetto artificiale più lontano dalla Terra. È previsto che continuerà ad operare fino al 2025, quando gli RTG smetteranno di fornire abbastanza energia elettrica. Missione primaria della Voyager 1 era studiare Giove e Saturno. La Voyager 1 iniziò a fotografare Giove nel gennaio 1979. La sonda passò vicino a Giove il 5 marzo 1979, e continuò a fotografare il pianeta fino ad aprile. Poco tempo dopo fu la volta della sonda sorella Voyager 2. Le due Voyager fecero numerose scoperte su Giove e i suoi satelliti. La più sorprendente fu la scoperta di vulcani di zolfo su Io, che non erano mai stati osservati né dalla Terra né dal Pioneer 10 o dal Pioneer 11. La sonda proseguì il suo viaggio verso Saturno. Il punto di massimo avvicinamento fu raggiunto il 12 novembre 1980, quando passò ad una distanza di poco più di 120000 km dal pianeta. La sonda fotografò le complesse strutture degli anelli di Saturno, e studiò l'atmosfera di Saturno e di Titano. La sua orbita, progettata per studiare Titano da vicino, la portò fuori dal piano dell'eclittica, impedendole di visitare altri pianeti. Dopo aver oltrepassato Saturno e le sue lune, la sonda si è progressivamente allontanata dal Sole, dirigendosi verso i confini del Sistema solare. Nel novembre 2003 è stato annunciato che secondo l'analisi dei dati registrati la Voyager 1 avrebbe passato il "termination shock" (il confine dove le particelle del vento solare vengono rallentate a velocità subsoniche) nel febbraio 2004. Altri scienziati hanno espresso dubbi in proposito (discussi nella rivista Nature il 6 novembre). Probabilmente serviranno altre analisi, rese difficili anche dal fatto che i rivelatori di vento solare a bordo del Voyager 1 hanno smesso di funzionare nel 1990. Le ultime dichiarazioni indicano che la sonda avrebbe attraversato il termination shock nel dicembre 2004. Dati del dicembre 2012 inviati dalla sonda dimostrano nuove e sensazionali scoperte dei confini del sistema solare. La sonda è entrata in una "autostrada magnetica" che collega il sistema solare allo spazio interstellare. Questa "autostrada" sembrerebbe essere un mezzo di collegamento fra il campo magnetico del sole ed il campo magnetico interstellare. Tutto ciò permette alle particelle cariche all'interno dell'eliosfera di uscire fuori e alle particelle cariche dell'esterno di riversarsi dentro. Pertanto il Voyager 1 sta analizzando particelle cariche provenienti dall'esterno del sistema solare. Gli esperti ritengono però che i dati sul campo magnetico non facciano pensare che sia già nello spazio interstellare, in quanto la direzione delle linee del campo magnetico dovrebbero mutare, quando invece non lo stanno facendo. La sonda si sarebbe immessa sull'autostrada magnetica il 28 luglio 2012 e da allora questa regione si è allontanata e riavvicinata ad essa molte volte. La sonda vi è infine rientrata il 25 agosto 2012. Mentre la sonda sta viaggiando verso lo spazio interstellare, i suoi strumenti continuano a studiare l'ambiente del sistema solare. Gli scienziati del Jet Propulsion Laboratory della NASA stanno usando gli strumenti a bordo per cercare il punto esatto dell'eliopausa. Il 13 dicembre 2010 è stato dichiarato che nel giugno 2010, a una distanza di circa 114 UA (circa 17 miliardi di km) dal Sole, la Voyager 1 ha rilevato che la velocità del vento solare è diminuita fino a zero, perciò la sonda potrebbe aver raggiunto l'eliopausa, tuttavia sono in corso ulteriori analisi per averne la certezza. Il 13 settembre 2013 è stato dichiarato che il 25 agosto del 2012, a una distanza di circa 121 UA dal Sole, avrebbe superato il confine dell'eliopausa. Ad indicarlo fu una nuova misurazione della densità del plasma di particelle a bassa energia che circondano la sonda, che mostrò un brusco incremento compatibile con le previsioni teoriche. Gli strumenti hanno rivelato una brusca diminuzione dei raggi cosmici solari, la cui intensità è scesa verso valori vicini allo zero. Il 14 giugno 2012 la NASA ha dichiarato che, per effetto del flusso di particelle cosmiche, gli strumenti della sonda hanno registrato segnali nuovi completamente diversi da quelli registrati sinora, per tale ragione si ritiene che la Voyager 1 sia vicina all'ingresso nello spazio interstellare. Successivamente il 3 agosto 2012 la NASA ha dichiarato che due dei tre segnali chiave (che era stato previsto che sarebbero dovuti cambiare nel momento in cui la sonda fosse entrata nello spazio interstellare) sono cambiati rapidamente come non accadeva da 7 anni. Il 12 settembre 2013 la NASA ha confermato che il 25 agosto del 2012 la Voyager 1, a una distanza di circa 121 UA dal Sole, è entrata ufficialmente nello spazio interstellare. La Voyager 1 è ancora funzionante ed è l'oggetto costruito dall'uomo più distante dalla Terra avendo superato la sonda Pioneer 10. Nel 2013 la Voyager 1 ha raggiunto lo spazio interstellare e al 22 ottobre 2020 si trova ad una distanza di 150,826 UA (equivalenti a 20,906 ore luce o 22,563 miliardi di km) dal Sole. La sonda si sta allontanando dal sistema solare a una velocità di 16,9995 km/s, pari ad oltre 3,5 UA all'anno; è in leggerissimo rallentamento a causa dell'attrazione solare. Nel 2018 sono stati attivati dei propulsori nuovamente funzionanti dopo 37 anni di inattività che saranno in grado di estendere la missione. La Voyager 1 è alimentata da una batteria RTG che le permetterà di funzionare, seppure in modo limitato, fino al 2025 quando avrà raggiunto oltre 25 miliardi di chilometri di distanza dalla Terra. In base alle previsioni, la Voyager 1 potrebbe raggiungere e analizzare l'ipotetico muro d'idrogeno (situato tra l'eliopausa e il bow shock), però sarà impossibile che la sonda sia ancora funzionante quando raggiungerà il bow shock situato a circa 230 UA dal Sole; nell'ipotesi che viaggi all'attuale velocità, si può stimare il raggiungimento di tale zona nel 2042, ma in realtà occorrerà più tempo a causa del progressivo leggero rallentamento della sonda. Fra 30 000 anni circa, la Voyager 1 uscirà completamente dalla Nube di Oort ed entrerà nel campo di attrazione gravitazionale di un'altra stella. La sonda si sta dirigendo in direzione della costellazione dell'Ofiuco e tra circa 38 000 anni passerà ad una distanza di circa 1,7 anni luce dalla stella Gliese 445 situata nella costellazione della Giraffa. Il sistema di comunicazione radio di Voyager 1 è stato progettato per essere usato oltre il limite del sistema solare. Il sistema di comunicazione include un'antenna parabolica di 3,7 m di diametro per mandare e ricevere onde radio attraverso le tre "Deep space network" sulla Terra. Quando Voyager 1 non ha la possibilità di comunicare direttamente con la Terra, il suo nastro digitale può registrare circa 64 kB di dati, per trasmetterli in un secondo momento. Attualmente, i segnali che partono dalla sonda impiegano 21 ore per raggiungere la Terra. Voyager 1 ha tre generatori termoelettrici a radioisotopi (RTGs). Ogni MHW-RTG contiene 24 sfere di ossido di plutonio-238. Gli RTGs generavano, al momento del lancio, circa 470 W di potenza elettrica. La rimanente potenza è dissipata come calore residuo. Nonostante il decadimento del plutonio, gli RTGs della navicella continueranno a renderla operativa fino il 2025. Il "computer command Subsystem" (CCS) controlla le macchine fotografiche. Il CCS contiene inoltre programmi per la decodifica dei comandi, correzione delle routine e rilevamento degli errori, routine di puntamento dell'antenna. Questo computer è una versione migliorata di quello che fu usato nel Viking Orbiters.[23]"The attidude and articulation control Subsystem" (AACS) controlla l'orientamento della navicella. Mantiene l'antenna puntata verso la terra, controlla i cambiamenti di assetto e punta le piattaforme di scan. Il Voyager Golden Record è un disco registrato placcato in oro contenente immagini e suoni della Terra, che la sonda, così come il Voyager 2, porta con sé. I contenuti della registrazione furono selezionati da un comitato presieduto da Carl Sagan. Le istruzioni per accedere alle registrazioni sono incise sulla custodia del disco, nel caso "qualcuno lo trovasse". Lanciata il 5 settembre del 1977 Voyager 1 è la sonda spaziale di NASA che ha contribuito (assieme al programma omonimo) a cambiare in maniera radicale le conoscenze scientifiche e l'interesse del grande pubblico per l'esplorazione del Sistema Solare. Dotata di un generatore a energia atomica (con 24 sfere pressate di plutonio-238), Voyager 1 vanta il record di oggetto prodotto dall'uomo attualmente più distante dalla Terra. La sonda ha superato le 150 unità astronomiche (AU) dal pianeta di origine, e ora viaggia nello spazio esterno al Sistema Solare noto come "medium interstellare". A oltre 40 anni di distanza dal lancio, Voyager 1 e Voyager 2 continuano a funzionare e a comunicare con il team di controllo NASA presso il JPL (Jet Propulsion Laboratory) grazie alle gigantesche antenne terrestri del Deep Space Network. NASA offre un vero e proprio "stato di missione" sulle due sonde, aggiornato in tempo quasi-reale e accessibile liberamente dal pubblico a questa pagina Web. Il Mission Status delle due Voyager include il tempo di missione intercorso dal lancio, la distanza dalla Terra e dal Sole (in miglia e AU) la velocità in relazione al Sole (in miglia orarie), lo stato degli strumenti di bordo. Particolarmente interessante è poi la riproduzione tridimensionale del "viaggio" delle due Voyager, con i dati sulla posizione di Voyager 1 e Voyager 2 in relazione ai pianeti e agli altri oggetti celesti aggiornati in tempo reale. Voyager 1 e il programma Voyager rappresentano una delle imprese spaziali più solide e iconiche di NASA, un monumento all'ingegno e alla voglia di esplorazione del genere umano che continua ad animare dibattiti e celebrazioni a più di quattro decenni dall'avvio della missione. Appena sei giorni fa, Voyager 1 ha festeggiato il superamento dei 14 miliardi di miglia (22,5 miliardi di chilometri) di distanza dalla Terra. La sonda spaziale Voyager 2 è stata una delle prime esploratrici del sistema solare esterno, ed è ancora in attività. Fu lanciata il 20 agosto 1977 dalla NASA da Cape Canaveral, a bordo di un razzo Titan III, poco prima della sua sonda sorella, la Voyager 1, in un'orbita che l'avrebbe portata più tardi a visitare i pianeti. Le due sonde appartengono allo stesso programma Voyager e sono identiche. L'orbita in cui fu immessa la sonda la portò a sfiorare i due pianeti giganti, Giove e Saturno. Durante il viaggio, i tecnici si resero conto che potevano sfruttare un allineamento planetario piuttosto raro per far proseguire la sonda verso Urano e Nettuno. Dalla Voyager 2 vengono la maggior parte delle informazioni che abbiamo su questi due pianeti. Il 5 novembre 2018 la sonda Voyager 2 ha oltrepassato l'eliopausa diventando il secondo oggetto costruito dall'uomo ad uscire nello spazio interstellare, preceduto dalla Voyager 1. La Voyager 2 ha visitato quattro pianeti:

  • Giove (9 luglio 1979)
  • Saturno (26 agosto 1981)
  • Urano (24 gennaio 1986)
  • Nettuno (25 agosto 1989)

Passando accanto ai primi due, la Voyager 2 integrò le immagini e gli studi fatti dalla Voyager 1. I passaggi vicino a Urano e Nettuno furono invece i primi (e a tutt'oggi gli unici) incontri ravvicinati con questi due pianeti. Da allora la sonda si sta allontanando dal Sole, a velocità inferiore rispetto alla Voyager 1. Dopo aver superato Nettuno, la sonda si è progressivamente allontanata dal Sole, dirigendosi verso i confini del sistema solare. L'11 dicembre 2007 è stato comunicato che la sonda ha attraversato il termination shock, una zona di spazio dopo la quale il campo magnetico del Sole non ha più influenza; anche la Voyager 1 ha attraversato la stessa zona circa 3 anni prima, però non si avevano a disposizione dati certi a causa del rilevatore di vento solare non funzionante. La Voyager 2 è stata quindi la prima sonda ad avere rilevato e misurato il termination shock. Le ultime informazioni indicano che la Voyager 2 avrebbe attraversato il termination shock nel settembre 2007. La Voyager 2 è ancora funzionante ed è il terzo oggetto costruito dall'uomo più distante dalla Terra, dopo la sonda Voyager 1 e Pioneer 10; la Voyager 2 non sorpasserà mai la prima, mentre dovrebbe sorpassare la seconda nel 2023, anno stimato non considerando il diverso progressivo leggero rallentamento delle due sonde. Il 13 agosto 2012 la Voyager 2 ha superato il record di longevità detenuto fino ad allora dalla sonda Pioneer 6 con 34 anni e 340 giorni di servizio. Il 5 novembre 2018 lo strumento ha rilevato un brusco calo della velocità del vento solare e da quella data non ha più rilevato alcun flusso nell'ambiente circostante. La conferma dell'uscita dall'eliosfera, compiuta il 5 novembre 2018, è stata fornita dallo strumento Plasma Science Experiment, che utilizza la corrente elettrica del plasma solare per rilevare la velocità, la densità, la temperatura, la pressione e il flusso del vento solare. Il 15 settembre 2019 la Voyager 2 si trovava nello spazio interstellare alla distanza di 121,367 UA (equivalenti a 16,822 ore luce o 18,214 miliardi di km) dal Sole. La sonda si sta allontanando dal Sole alla velocità di 15,374 km/s, pari a 3,241 UA all'anno; la sua velocità è in leggerissimo rallentamento. La Voyager 2 è alimentata da una batteria RTG che le permetterà di funzionare, seppure in modo limitato, fino al 2025. Secondo le previsioni, dopo aver raggiunto ed analizzato l'eliopausa pochi anni dopo la Voyager 1, che l'ha raggiunta nell'agosto 2012, dovrebbe in seguito raggiungere e analizzare anche lo spazio interstellare e l'ipotetico muro d'idrogeno (situato tra l'eliopausa e il bow shock), però sarà impossibile che la sonda sia ancora funzionante quando raggiungerà il bow shock situato a circa 230 UA dal Sole; nell'ipotesi che viaggi all'attuale velocità, si può stimare il raggiungimento di tale zona nel 2052, ma in realtà occorrerà più tempo a causa del progressivo leggero rallentamento della sonda. Tra circa 40.000 anni passerà a circa 1,7 anni luce dalla stella Ross 248, distante dal Sole 10,32 anni luce, situata nella costellazione di Andromeda (a quell'epoca Ross 248 sarà la stella più vicina al Sole, a circa 3 anni luce); inoltre, tra circa 296.000 anni passerà a circa 4,3 anni luce dalla stella Sirio, distante dal Sole 8,6 anni luce. La sonda Voyager 2 della Nasa risponde dallo spazio interstellare: i responsabili della missione le hanno inviato un segnale e la sonda ha confermato di aver ricevuto la "chiamata" ed ha eseguito i comandi senza problemi. Lanciata nel 1977, la sonda ha lasciato il Sistema Solare nel 2018 e ora si trova a più 18,8 miliardi di chilometri dalla Terra. E' stata contattata per testare i nuovi componenti recentemente installati sulla Deep Space Station 43, l'unica antenna al mondo in grado di inviarle comandi. L'antenna si trova a Canberra, in Australia, e fa parte del Deep Space Network (Dsn) della Nasa, una rete di antenne radio utilizzate per comunicare con veicoli spaziali che operano oltre la Luna. Da marzo scorso l'antenna non era operativa per un aggiornamento tecnico che ha riguardato una serie di apparecchiature, compresi due nuovi trasmettitori radio. Uno di questi, che viene utilizzato per comunicare con Voyager 2, non era stato sostituito da oltre 47 anni. Il Deep Space Network è costituito da tre antenne radio che si trovano a Canberra; Goldstone in California, e Madrid in Spagna. La posizione delle tre antenne garantisce che quasi tutti i veicoli spaziali con una linea di vista verso la Terra possano comunicare con almeno una delle strutture in qualsiasi momento. Voyager 2 è la rara eccezione. Per fare un sorvolo ravvicinato della luna di Nettuno Tritone nel 1989, la sonda ha sorvolato il polo nord del pianeta. Quella traiettoria l'ha deviata verso sud rispetto al piano dei pianeti, e da allora si è diretta in quella direzione. Ora è così a sud che non ha una linea di vista con le antenne radio nell'emisfero settentrionale. L'antenna di Canberra è l'unica parabola nell'emisfero australe che ha un trasmettitore abbastanza potente e che trasmette la giusta frequenza per inviare comandi alla sonda lontana. L'aggiornamento tecnico, secondo la Nasa, andrà a beneficio anche di altre missioni, incluso il rover Mars Perseverance, che dovrebbe atterrare sul pianeta rosso il 18 febbraio 2021, e la missione Artemis della Nasa che intende riportare l'uomo sulla Luna.

Cassini

Cassini-Huygens è stata una missione robotica interplanetaria congiunta NASA/ESA/ASI, lanciata il 15 ottobre 1997 con il compito di studiare il sistema di Saturno, comprese le sue lune e i suoi anelli. La sonda si componeva di due elementi: l'orbiter Cassini della NASA e il lander Huygens dell'ESA. La sonda ha concluso la sua missione con il suo "gran finale" il 15 settembre 2017 dopo che, come programmato, è stata fatta rientrare nell'atmosfera di Saturno e così disintegrata. La sonda è andata distrutta circa alle 10:31 UTC e l'ultimo segnale è stato ricevuto alle 11:55 UTC. Cassini è stata la prima sonda ad essere entrata nell'orbita di Saturno, il 1º luglio 2004 (ore 04:12 GMT), e solo la quarta ad averlo visitato (prima della Cassini erano già passate la Pioneer 11 e le Voyager 1 e 2). Il 25 dicembre 2004 la sonda Huygens si è separata dalla nave madre e si è diretta verso la principale luna di Saturno, Titano. Il 14 gennaio 2005 Huygens è scesa nell'atmosfera del satellite e durante la corsa ha raccolto dati sull'atmosfera, immagini della superficie, rumori dall'ambiente circostante. Ha toccato il suolo dopo una discesa di 2 h e 30 m ed ha poi continuato a trasmettere il suo segnale per altri 90 minuti. L'orbiter Cassini prende il nome dall'astronomo italiano Giovanni Domenico Cassini che, verso la fine del Seicento, ebbe un ruolo di primaria importanza nello studio di Saturno e dei suoi anelli. Il lander Huygens prende il nome dall'astronomo olandese del XVII secolo Christiaan Huygens che, utilizzando il proprio telescopio, scoprì Titano. Sviluppata dalla NASA in collaborazione con l'ESA (l'Agenzia spaziale europea) e con l'ASI (l'Agenzia spaziale italiana), la sonda Cassini è un prodigio della tecnologia spaziale del XX secolo, costituita da due componenti distinte: un orbiter e una sonda secondaria (Huygens). Alta 7 metri e larga 4, questa sonda da 6 tonnellate (orbiter, sonda Huygens e propellente compreso) era dotata di un'antenna parabolica larga poco meno di 4 metri, un'asta-magnetometro lunga 13 metri, 22.000 connessioni elettriche, 12 chilometri di cavi elettrici, ottantadue unità di riscaldamento a radioisotopi, sedici motori di assetto ("thrusters") a idrazina, e la maggior parte dei sistemi era "ridondata", ovvero affiancata da un analogo sistema di riserva, per minimizzare le probabilità di guasti, che non avrebbero avuto possibilità di essere riparati: la sonda si trovava nel 2007 a più di un miliardo di chilometri dalla Terra e i suoi segnali radio, pur viaggiando alla velocità della luce (299792,458 km/s) impiegarono circa 60 minuti per raggiungere la Terra. Cassini è stata l'ultima delle grandi missioni spaziali della NASA. Ne ha tutte le caratteristiche tipiche: grandi dimensioni, grande abbondanza di apparecchiature, lungo tempo di sviluppo e costo elevatissimo: circa 5 miliardi di dollari, comprensivi delle operazioni durante la vita della sonda. Dopo lo sviluppo della sonda Cassini, la NASA passò alla filosofia faster, better, cheaper (più veloce, migliore, più economico), con alterni risultati. Considerando la distanza di Saturno dal Sole i raggi solari non potevano essere sfruttati come fonte di energia. Per generare abbastanza energia i pannelli solari avrebbero dovuto essere molto grandi e di conseguenza pesanti. Per questo motivo l'orbiter è stato alimentato da tre generatori termoelettrici a radioisotopi (RTG). Al momento del lancio i generatori atomici della sonda Cassini provocarono numerose polemiche da parte di ambientalisti che sottolineavano il rischio di contaminazione ambientale in caso di incidente. I generatori atomici della sonda Cassini erano unità RTG passive: non avevano reattori atomici, ma sfruttavano semplicemente il calore prodotto dal decadimento radioattivo di una piccola quantità di plutonio per produrre corrente elettrica. In termini semplici, è stato usato un piccolo contenitore di scorie nucleari per produrre energia. Nel peggiore dei casi un incidente avrebbe potuto comportare lo spargimento del plutonio nell'atmosfera. La NASA sottolineò come le unità RTG fossero rinchiuse in un contenitore progettato appositamente per sopravvivere anche all'esplosione totale del razzo e, se pure esso si fosse rotto, la quantità di plutonio sarebbe stata così piccola da fare aumentare a malapena il livello di radioattività rispetto al fondo di radioattività naturale già presente nella zona. La questione venne messa a tacere dal lancio, che risultò perfetto. È da notare che, in una missione precedente, un'unità RTG simile a quella della sonda Cassini uscì effettivamente intatta dall'esplosione del razzo che la conteneva. L'unità fu recuperata e le sue condizioni erano talmente buone da essere imbarcata in una missione successiva. Alla fine degli undici anni nominali della missione gli RTG saranno ancora in grado di produrre fra i 600 e i 700 Watt di potenza elettrica. L'orbiter viene alimentato da tre generatori atomici, ed è la parte principale della sonda, quella, cioè, che è stata messa in orbita attorno a Saturno e che ha compiuto il viaggio dalla Terra. Ha un peso di oltre 2 tonnellate ed è dotato di dodici differenti strumenti scientifici, due registratori digitali di dati, due computer primari e cinquanta computer secondari. La sua strumentazione di bordo comprende camere per immagini operanti sia in luce visibile, che nell'infrarosso e nell'ultravioletto. Le immagini ottenute da questi strumenti sono fondamentali per fornire un'esatta morfologia dei corpi osservati e saranno integrate anche dai dati raccolti dai radar di bordo per costruire una mappa dettagliata della superficie di Titano. La sonda possiede inoltre alcuni spettrografi utili per lo studio della temperatura e della composizione chimica della superficie di Saturno, della sua atmosfera, nonché dei suoi celebri anelli. Altri strumenti, infine, permettono di analizzare le proprietà e il comportamento del gas ionizzato all'interno della magnetosfera del pianeta e di risalire, quindi, alle sue caratteristiche e all'intensità del campo magnetico. Cassini comunica con la Terra principalmente tramite una grande antenna parabolica, costruita per conto dell'Agenzia Spaziale Italiana dall'azienda italiana Alenia Spazio; con un diametro di quattro metri e assistita da un complesso sistema elettronico di bordo, essa gestisce quattro bande di frequenze: X, Ka, S, Ku. Montata all'interno dell'orbiter è presente una sonda secondaria (le sue dimensioni non superano i 3 metri di diametro per 350 kg di peso), Huygens. Prende il nome dall'astronomo olandese del XVII secolo Christiaan Huygens, che utilizzando il proprio telescopio scoprì Titano. Si è staccata dalla sonda principale il 25 dicembre 2004, ed è atterrata su Titano il 14 gennaio 2005. Dopo la fase di avvicinamento è entrata nel campo gravitazionale di Titano e ha iniziato la discesa guidata attraverso la sua atmosfera rallentata da un paracadute (solo nella prima fase) e da razzi frenanti. In questa fase (della durata di circa due ore) una speciale telecamera ha effettuato una prima ripresa della superficie di Titano, fondamentale per poterne studiare la geologia. Parallelamente i sensori di bordo hanno provveduto ad una costante misurazione della temperatura delle nubi, mentre gli spettrografi hanno misurato la loro composizione chimica e le caratteristiche fisico-chimiche delle particelle di polvere in sospensione nell'atmosfera. Un ulteriore esperimento condotto durante la fase di discesa è stata la misurazione della velocità dei venti sulla superficie di Titano (attraverso tecniche Doppler). Al momento dell'atterraggio (in una zona di Titano denominata Xanadu - ma era stato previsto anche l'ammaraggio in un eventuale oceano di Titano) la sonda aveva energia appena sufficiente per effettuare una seconda volta tutte queste misure. Mezz'ora dopo si è spenta definitivamente. Nella più ottimistica delle previsioni il piccolo robot della capsula Huygens avrebbe dovuto inviare informazioni per quindici minuti al massimo, invece ha continuato a fare sentire la sua voce per altre due ore, fino a che Cassini non è tramontato dietro al pianeta. Tramite i radiotelescopi di tutto il mondo il suo segnale è stato raccolto per un'altra ora. 

New Horizons


New Horizons
è una sonda spaziale sviluppata dalla NASA per l'esplorazione di Plutone e del suo satellite Caronte. Il lancio è avvenuto il 19 gennaio 2006 dalla base di Cape Canaveral e il sorvolo di Plutone ha avuto luogo il 14 luglio 2015, alle 13:49:57 ora italiana. L'obiettivo primario è studiare la geologia e la morfologia del pianeta nano Plutone e del suo satellite Caronte, creare una mappa della superficie dei due corpi celesti e analizzarne l'atmosfera. Altri obiettivi sono lo studio dell'atmosfera dei due corpi celesti al variare del tempo, l'analisi ad alta risoluzione di alcune zone di Plutone e Caronte, l'analisi della ionosfera e delle particelle cariche, la ricerca di atmosfera attorno a Caronte, lo studio dei quattro satelliti minori Stige, Notte, Cerbero e Idra, la ricerca di eventuali satelliti o anelli sconosciuti. La missione prevede inoltre che la sonda continui il viaggio nella fascia di Kuiper per inviare dati sulla fascia alla Terra. Il primo gennaio 2019, la sonda ha incrociato l'orbita dell'asteroide 486958 Arrokoth (anche noto come Ultima Thule) nella fascia di Kuiper, sorvolandolo ad una distanza minima di circa 3500 km. Con una velocità di 58 536 chilometri all'ora (16 260 m/s), raggiunta allo spegnimento del terzo stadio, è l'oggetto artificiale che ha raggiunto la velocità maggiore nel lasciare la Terra. La sonda contiene una parte delle ceneri di Clyde Tombaugh, l'astronomo che nel 1930 scoprì Plutone, un cd-rom con i nomi di 434 000 persone che si sono iscritte al progetto, due monete, due bandiere degli Stati Uniti e un francobollo del 1991 che recita: «Plutone: non ancora esplorato». Il lancio di New Horizons era pianificato per il 17 gennaio 2006 con una finestra di lancio di 07:06-09:06 (UTC) (2:06-4:06 EST), ma le avverse condizioni meteo spinsero il controllo missione a rinviare il lancio. La sonda è stata lanciata il 19 gennaio 2006 alle 14:00 EST dalla piattaforma 41 della Cape Canaveral Air Force Station, Florida, a sud del complesso di lancio Space Shuttle n. 39, con un terzo stadio Star 488 aggiunto per fornire la necessaria potenza per raggiungere la velocità richiesta. Erano state previste altre opportunità di lancio nel febbraio del 2006 e nel febbraio del 2007, ma solo i primi 23 giorni della finestra del 2006 avrebbero permesso il sorvolo di Giove. Qualsiasi lancio al di fuori di quel periodo avrebbe obbligato la sonda a seguire una traiettoria più lenta direttamente verso Plutone, ritardando l'incontro con il pianeta nano di 2-4 anni. La sonda ha quindi fatto rotta per Giove, che è stato raggiunto nel febbraio del 2007 e il cui campo gravitazionale è stato sfruttato per una manovra di fionda gravitazionale. Il sorvolo ravvicinato del pianeta è stato anche sfruttato per eseguire osservazioni scientifiche, in particolare un rapido monitoraggio dell'atmosfera gioviana e dell'attività vulcanica su Io. La campagna osservativa è durata quattro mesi e ha quindi preceduto e seguito l'incontro. Inoltre sono state coinvolte nell'osservazione a distanza altre sonde in missione nello spazio profondo, tra cui la sonda europea Rosetta. Il viaggio della sonda verso Plutone prevede una traiettoria che esce dal piano dell'eclittica formando con questo un angolo di 2,5 gradi. Era stata anche avanzata l'ipotesi di sorvolare Centauro durante la fase di viaggio ed era stato indicato il 2010 come periodo probabile per l'incontro che a ogni modo non ha avuto luogo. Nella fase di avvicinamento a Plutone la sonda è transitata in prossimità del punto lagrangiano L5 dell'orbita di Nettuno che ospita degli asteroidi troiani. L'attraversamento del sistema di Plutone è avvenuto nel luglio 2015. Le osservazioni sono iniziate sei mesi prima del sorvolo di Plutone e per 150 giorni hanno permesso di ottenere una risoluzione superiore a quella del telescopio Spaziale Hubble. Le osservazioni sono continuate per due settimane dopo che la sonda ha oltrepassato il pianeta nano. Le analisi includeranno la mappatura di Plutone e di Caronte a lungo raggio a 40 km di risoluzione, che avverrà 3,2 giorni dopo il sorvolo degli oggetti. Durante le osservazioni, sfruttando la rotazione dei due corpi, si potrà ottenere una mappa priva di zone d'ombra. È previsto che l'avvicinamento a Plutone avvenga a 11 km/s fino ad una distanza di 9600 km, mentre quello di Caronte avverrà a 27000 km; questi parametri possono tuttavia subire modifiche durante la missione. Durante il sorvolo le strumentazioni riprenderanno le immagini con una risoluzione massima di 25 m/pixel, a quattro colori, una mappa globale con risoluzione di 1,6 km, nella banda dell'infrarosso una mappa da 7 km/pixel globalmente o localmente di 0,6 km/pixel, per poter definire l'atmosfera dei pianeti. Dopo il passaggio nel sistema di Plutone la New Horizons ha continuato a dirigersi verso la fascia di Kuiper con lo scopo di incontrare uno o più oggetti dal diametro di 50/100 km su cui svolgerà misure simili a quelle svolte su Plutone. Con limitate possibilità di manovra, la sonda il 1º gennaio 2019 ha raggiunto il primo di questi oggetti intersecando l'orbita dell'asteroide 486958 Arrokoth, che si è rivelato essere un asteroide binario. Dopo l'incontro con 486958 Arrokoth viene confermato che la sonda avrà sufficiente potenza perché gli strumenti siano operativi fino al 2030. Negli anni 2020 si cercheranno altri oggetti nel bordo esterno della fascia di Kuiper abbastanza vicino alla traiettoria della sonda. Infine la New Horizons scatterà una foto della Terra dalla fascia di Kuiper, ma dopo aver completato tutti i fly-by previsti, questo perché puntata verso la Terra, la fotocamera rischia di danneggiarsi a causa della luce solare. Il 28 e il 30 gennaio 2006 i controllori di missione guidarono la sonda attraverso la prima correzione di rotta (Trajectory Correction Maneuver - TCM), suddivisa in due fasi. La prima correzione tuttavia fu sufficientemente precisa da evitare la seconda. Durante la settimana del 20 febbraio, i controllori iniziarono alcuni test dei tre strumenti scientifici di bordo: lo spettrometro a ultravioletti Alice, il sensore PEPSSI e la camera LORRI. Non vennero riprese immagini o misurazioni, ma furono controllati solo i sistemi elettronici ed elettromeccanici per lo spettrometro Alice, che risultarono correttamente funzionanti. Il 9 marzo, alle 17:00 UTC venne effettuata la terza correzione di rotta prevista con una accensione dei propulsori durata 76 s. Il 7 aprile 2006 alle 10:00 UTC la sonda passò l'orbita di Marte a una velocità di circa 21 km/s alla distanza di 243 milioni di km dal Sole. Venne compiuto un sorvolo a lunga distanza dell'asteroide 132524 APL, precedentemente noto con il suo nome provvisorio 2002 JF56. Il massimo avvicinamento, pari a 101867 km, è stato raggiunto alle 04:05 UTC del 13 giugno 2006. La stima migliore del diametro di questo corpo celeste è di circa 2,3 km e lo spettro ottenuto mostra che è un asteroide di tipo S. La sonda tracciò con successo l'asteroide tra il 10 ed il 12 giugno 2006 in modo da permettere al team della missione di compiere un test sulla capacità della sonda di seguire oggetti che sono in rapido movimento. Le immagini furono ottenute attraverso il telescopio Ralph. La camera LORRI riprese le prime immagini di Giove il 4 settembre 2006 e nel dicembre 2006 la sonda iniziò a studiare ulteriormente il sistema gioviano. La New Horizons effettuò la manovra di fionda gravitazionale sfruttando il campo gravitazionale di Giove con un avvicinamento massimo il 28 febbraio 2007 alle 5:43:40 UTC. È stata la prima sonda lanciata direttamente verso Giove dopo la sonda Ulysses nel 1990. L'incontro ravvicinato ha incrementato la velocità di circa 4 km/s, inserendo la sonda in una traiettoria più veloce verso Plutone, con inclinazione di 2,5 gradi rispetto all'eclittica. Mentre era nei pressi del gigante gassoso, gli strumenti hanno migliorato le misurazioni delle orbite dei satelliti interni, in particolare quella di Amaltea. Le camere hanno monitorato i vulcani di Io e hanno compiuto osservazioni degli altri tre satelliti galileiani e dei satelliti Imalia ed Elara. Sono state anche effettuate analisi della piccola macchia rossa, della magnetosfera e il sistema di anelli. Le prime immagini di Plutone sono state riprese tra il 21 e il 24 settembre 2006 durante il test del Long Range Reconnaissance Imager e pubblicate il 28 novembre. Le immagini riprendono il pianeta nano a una distanza di 4,2 miliardi di km e hanno confermato le capacità dei sistemi di bordo di seguire oggetti distanti, capacità indispensabili per effettuare le manovre verso il pianeta e gli altri oggetti della fascia di Kuiper. La fase di avvicinamento a Plutone ebbe inizio 6 mesi prima del punto di massimo avvicinamento al pianeta e durante questa fase furono effettuate delle osservazioni a lungo raggio. I dati ricavati dalle osservazioni di LORRI durante sette settimane prima del luglio 2015 non hanno evidenziato nubi di polveri, piccole lune o anelli che potessero danneggiare la sonda, per cui il 1º luglio 2015 la NASA decide di proseguire lungo la traiettoria ottimale prestabilita. Dopo 9 anni, 5 mesi e 25 giorni di viaggio nello spazio, il 14 luglio 2015 alle 11:49:57 UTC (13:49:57 ora italiana), New Horizons ha raggiunto il punto di massimo avvicinamento a Plutone, a 12500 km dalla superficie del pianeta e ad una velocità relativa di 11 km/s; la sonda inoltre ha effettuato il sorvolo di Caronte ad una distanza di 27000 km dalla superficie. Durante il fly-by, la sonda è riuscita ad ottenere immagini ad alta risoluzione della superficie di Plutone e Caronte, permettendo di vederli in dettaglio per la prima volta dalla loro scoperta; vennero inoltre effettuati vari esperimenti scientifici. A causa, però, della limitata disponibilità di energia utilizzabile istantaneamente, gli strumenti furono fatti funzionare a turno durante la manovra. La distanza di 33 UA dalla Terra (circa 4,5 ore/luce) è stata tale da creare un ritardo nelle comunicazioni (tra andata e ritorno) di 9 ore. La trasmissione dei risultati scientifici avvenne in un periodo di 9 mesi dopo il sorvolo. Il 22 ottobre 2015 venne effettuata una manovra di correzione di 16 minuti che mise New Horizons sulla rotta verso la Fascia di Kuiper, per la precisione verso l'oggetto denominato 486958 Arrokoth. Altre manovre di correzione sono state effettuate il 25, il 28 ottobre e il 4 novembre dello stesso anno, ponendo la sonda lungo una rotta che ne ha permesso l'incontro con 486958 Arrokoth per i primissimi giorni del 2019. Durante il viaggio sono state effettuate delle misurazioni con gli strumenti di bordo simili a quelle avvenute durante il viaggio verso Plutone. Il 1º gennaio 2019, alle 06:33 ora italiana, la sonda ha sorvolato 486958 Arrokoth (nel frattempo soprannominato anche Ultima Thule), il corpo cosmico più lontano e mai esplorato dall'umanità, distante oltre 6,4 miliardi di chilometri dalla Terra. La sonda ha la forma di un triangolo con un RTG cilindrico che sporge da un lato del triangolo e un'antenna parabolica da 2,5 metri di diametro posizionata sul triangolo. La sonda comunicherà utilizzando la banda X e da Plutone potrà trasmettere alla velocità di 768 bit/s mentre da Giove trasmetterà a 38 kBit/s. I segnali verranno ricevuti dal Deep Space Network. L'RTG fornirà i 190 Watt previsti almeno fino al 2015. Come propellente viene utilizzata l'idrazina, che fornisce 290 m/s di delta-v dopo il lancio. La sonda è dotata di stabilizzatori lungo i tre assi e lungo le tre possibili rotazioni, coadiuvati da due fotocamere astronomiche, prodotte da Galileo Avionica, per il controllo di precisione dell'assetto; le fotocamere sono montate su un lato della sonda. Il peso totale della sonda, incluso il propellente, è di 470 kg. Viceversa, nel caso in cui non si fosse voluto sfruttare il sorvolo di Giove, la massa massima consentita per la sonda sarebbe stata di 445 kg. Tuttavia ciò avrebbe comportato una minor quantità di propellente disponibile per le operazioni successive nella Fascia di Kuiper. La sonda ha sette strumenti. Il Long Range Reconnaissance Imager (LORRI), una fotocamera digitale ad alta risoluzione nel campo del visibile. Il Pluto Exploration Remote Sensing Investigation (PERSI) consistente in due strumenti, Ralph telescopio con diverse lunghezze d'onda analizzabili, un CCD per le lunghezze d'onda visibili (MVIC), uno spettroscopio per l'infrarosso (LEISA) e uno spettroscopio per l'ultravioletto (Alice). Le particelle ad alta energia sono analizzate dallo strumento (PAM) consistente in SWAP un analizzatore toroidale elettrostatico e PEPSSI un misuratore della vita di volo degli ioni e sensore di elettroni. Il Radio Science Experiment (REX) utilizza un oscillatore molto stabile per effettuare analisi radio sul pianeta nano. Lo student-built dust counter (SDC) è un misuratore di polvere solare installato a bordo della sonda. Il costo totale previsto della missione è di 650 milioni di dollari. Il preventivo include anche la gestione a terra della sonda. La sonda rimpiazza la missione cancellata Pluto Kuiper Express. Per risparmiare propellente in vista di eventuali incontri con oggetti della fascia di Kuiper in seguito al sorvolo di Plutone non sono stati pianificati incontri con oggetti della fascia degli asteroidi. Dopo il lancio il team scientifico ha analizzato la traiettoria della sonda per determinare se per coincidenza potesse avvicinarsi a sufficienza a qualche asteroide per effettuare osservazioni. Nel maggio 2006 venne scoperto che la sonda sarebbe passata vicino al piccolo asteroide 132524 APL il 13 giugno 2006. Il punto di avvicinamento minimo è avvenuto alle 4:05 UTC ad una distanza di 101 867 km e l'oggetto venne ripreso dallo strumento Ralph che permise di testare le capacità dello strumento e misurare la composizione dell'asteroide. Non era possibile utilizzare LORRI a causa della vicinanza al Sole. Il sorvolo avvenne a circa 32 raggi gioviani (3 milioni di km) e fu al centro di una campagna osservativa intensiva durata 4 mesi. Giove è un soggetto interessante e sempre in cambiamento, osservato ad intermittenza dalla fine della missione della Sonda Galileo. New Horizons possiede strumentazione con tecnologia più avanzata rispetto alla sonda Galileo, soprattutto nelle camere. L'incontro con Giove ha funzionato anche come anteprima di quello con Plutone. A causa della distanza inferiore dalla Terra, le telecomunicazioni hanno permesso di trasmettere molti più dati di quelli che sono stati trasmessi da Plutone. Le riprese di Giove sono iniziate il 4 settembre 2006. Gli obiettivi primari dell'incontro includevano la dinamica delle nubi del pianeta, che si erano notevolmente ridotte dalla conclusione della missione della sonda Galileo, e lo studio della magnetosfera gioviana. Per una fortunata coincidenza la traiettoria di allontanamento dal pianeta seguita dalla New Horizons ha permesso di studiare la coda della magnetosfera gioviana per mesi. La sonda ha anche esaminato il lato notturno del pianeta per rilevare aurore e fulmini. New Horizons inoltre ha permesso le prime osservazioni ravvicinate della "Piccola Macchia Rossa" (ufficialmente chiamata Ovale BA), una tempesta che viene seguita da anni, che precedentemente si presentava di colore chiaro e che ha cambiato colore dopo il sorvolo della sonda Cassini-Huygens del 2000. I satelliti galileiani erano in cattive posizioni, poiché il punto di destinazione della manovra di fionda gravitazionale si trovava a milioni di km da qualunque satellite maggiore, tuttavia gli strumenti della sonda sono stati progettati per studiare oggetti piccoli, quindi si sono rivelati utili scientificamente. Su Io LORRI ha ricercato vulcani e pennacchi, LEISA ha misurato le temperature notturne e gli hotspot mentre Alice ha studiato il toro di particelle magnetiche alimentato dal satellite. Sono state studiate le composizioni chimiche di Europa e le varie atmosfere e aurore. È stato possibile raffinare i dati sulle orbite di satelliti minori come Amaltea. La traiettoria di New Horizons è passata nelle vicinanze del punto di Lagrange di Nettuno "L5", dove sono stati recentemente scoperti diversi asteroidi troiani. Alla fine del 2013, la New Horizons è passata a 1,2 UA da 2011 HM102, che era stato identificato dal gruppo della New Horizons durante la ricerca di oggetti più distanti da intercettare dopo l'incontro con Plutone del 2015. In quel momento l'asteroide sarebbe stato abbastanza luminoso da essere rilevabile dallo strumento LORRI della sonda, tuttavia il team della New Horizons alla fine decise che non si sarebbero occupati di 2011 HM102 perché i preparativi per l'approccio di Plutone avevano la precedenza. Il sorvolo di Plutone alla distanza minima di 12 472 km dalla superficie alla velocità di 49000 km/h è avvenuto con successo alle 11:49 UTC del 14 luglio 2015, per poi passare vicino a Caronte a 12:13 UTC, a una distanza minima di 26 926 km; la telemetria di conferma è arrivata sulla terra alle 02:52 del 15 luglio 2015, dopo circa 22 ore di silenzio radio programmato iniziato alcune ore prima del passaggio ravvicinato, in quanto il puntamento degli strumenti verso il sistema di Plutone impediva il puntamento dell'antenna verso la Terra. L'ultima immagine inviata a Terra prima della chiusura dei contatti radio è stata scattata a una distanza di 768 000 km il 13 luglio 2015, e ha una risoluzione di circa 3,5 km/pixel, a fronte di una risoluzione massima di 0,076 km/pixel per le foto scattate al massimo avvicinamento. Le telemetrie indicano che tutti i sistemi della sonda erano in perfetto stato dopo il sorvolo; era stata calcolata una probabilità di 1:10.000 che durante il sorvolo a bassa quota New Horizons potesse impattare con dei detriti che, danneggiandolo o distruggendolo, avrebbero impedito di ricevere a Terra i dati e le foto del sorvolo. Le osservazioni di Plutone, effettuate con LORRI e Ralph, sono iniziate 6 ore prima del punto di avvicinamento minimo ed erano mirate al rilevamento di eventuali anelli o ulteriori satelliti fino ad un diametro di 2 km, così da coordinare le manovre e la pianificazione delle osservazioni. Le riprese a lungo raggio includevano la mappatura di Plutone e Caronte alla risoluzione di 40 km per 3,2 giorni. Le osservazioni sono state ripetute per cercare cambiamenti dovuti alle nevi o al criovulcanismo. Da un'ora e mezza a due ore prima del sorvolo, Ralph effettuò una seconda mappatura della composizione della superficie alla risoluzione di 5-7 km/pixel. Altre mappe pancromatiche e a colori di Plutone e Caronte ad alta risoluzione e nell'infrarosso furono realizzate appena prima del sorvolo del pianeta. Durante il sorvolo ci si aspettava che LORRI fosse in grado di ottenere immagini selezionate con risoluzione di 60 m/px e il MVIC ha ottenuto mappe del lato illuminato a 4 colori con una risoluzione di 1,3 km. Entrambi gli strumenti hanno sovrapposto le aree riprese per formare immagini stereoscopiche. Nel frattempo Alice ha analizzato l'atmosfera, sia per le emissioni di molecole atmosferiche sia grazie all'occultamento delle stelle sullo sfondo. Durante e in seguito all'avvicinamento minimo, gli strumenti SWAP e PEPSSI hanno campionato l'alta atmosfera e i suoi effetti sul vento solare mentre VBSDC ha cercato polveri, ha ricavato il tasso di collisione con meteorite ed escluso la presenza di anelli. REX si è occupato delle analisi radio attive e passive: le stazioni a Terra hanno trasmesso un potente segnale radio mentre la sonda passava dietro al disco di Plutone. I sistemi di telecomunicazione della sonda hanno rilevato la perdita e la successiva riacquisizione del segnale quando essa è riemersa dall'altro lato del pianeta. Tramite la misurazione di questi tempi si è ricavata una misurazione più precisa del diametro del pianeta, della densità atmosferica e la sua composizione. Questo esperimento è stato il primo ad utilizzare un segnale proveniente dalla Terra, mentre sino a quel momento il segnale partiva dalla sonda verso la Terra, procedura impossibile in questo caso a causa della distanza. Inoltre è stata misurata la massa del pianeta e la sua distribuzione per mezzo dell'effetto Doppler del segnale radio provocato dalle modifiche all'accelerazione della sonda generate dal campo gravitazionale del pianeta. Il lato notturno è stato visibile tramite la luce solare riflessa da Caronte. Il 15 luglio sono ripresi i contatti con la sonda, dopo un silenzio radio durato 22 ore; la telemetria ha rivelato che il sorvolo è riuscito. Inizialmente sono state trasmesse delle immagini compresse, ossia di qualità bassa, che saranno selezionate dal team scientifico per la pubblicazione. La trasmissione delle immagini non compresse ha richiesto diversi mesi, in base al traffico dati presente sul Deep Space Network. Il compito immediato del veicolo spaziale era iniziare a restituire i 6,25 gigabyte di informazioni raccolte L'attenuazione di spazio libero alla distanza di 4,5 ore luce è di circa 303 dB a 7 GHz. Usando l'antenna direzionale e trasmettendo a piena potenza, la potenza irradiata efficace (EIRP) è +83 dBm, e a questa distanza il segnale che raggiunge la Terra è −220 dBm. Il livello del segnale ricevuto (RSL) che utilizza un'antenna Deep Space Network non array con 72 dBi di guadagno è di -148 dBm. A causa della RSL estremamente bassa, poteva solo trasmettere dati da 1 a 2 kilobit al secondo. Entro il 30 marzo 2016, la New Horizons aveva scaricato la metà dei dati. Il trasferimento fu completato il 25 ottobre 2016 alle 21:48 UTC, quando l'ultimo cluster di dati fu ricevuto dal Laboratorio di fisica applicata della Johns Hopkins University. A una distanza di 43 UA (6,43 miliardi di km) dal Sole e a 0,4 UA 486958 Arrokoth a novembre 2018, la New Horizons si stava dirigendo nella direzione del costellazione del Sagittario a 14,10 km/s rispetto al Sole. La luminosità del Sole dall'astronave è di magnitudine −18,5. 

Obiettivi primari

  • Esaminare la geologia globale e la morfologia di Plutone e Caronte
  • Mappare le composizioni chimiche delle superfici di Plutone e Caronte
  • Descrivere l'atmosfera non ionizzata di Plutone

Nel caso del fallimento di uno di questi, la missione si sarebbe dichiarata parzialmente fallita.

Obiettivi secondari

  • Descrivere la variabilità dell'atmosfera e della superficie di Plutone
  • Riprendere aree selezionate in stereoscopia
  • Mappare il terminatore in alta risoluzione
  • Mappare le composizioni chimiche di aree selezionate in alta risoluzione
  • Descrivere la ionosfera di Plutone e la sua interazione con il vento solare
  • Ricercare alcuni composti neutri come idrogeno, acido cianidrico, idrocarburi e altri
  • Ricercare un'eventuale atmosfera di Caronte
  • Mappare le temperature superficiali

Obiettivi terziari

  • Esaminare le particelle energetiche attorno a Plutone e Caronte;
  • Raffinare le misurazioni dei parametri e delle orbite;
  • Cercare ulteriori satelliti naturali e anelli.

La missione è ideata per effettuare il sorvolo di uno o più oggetti della fascia di Kuiper dopo aver passato Plutone. Gli oggetti dovranno essere trovati all'interno di una regione conica che si estende da Plutone e si trova all'interno di 55 UA con una ampiezza inferiore ad un grado perché la traiettoria della sonda è condizionata dal sorvolo di Plutone e dallo scarso propellente restante. A distanze maggiori la connessione dati diventerà troppo debole e la potenza dei generatori di energia sarà decaduta troppo per effettuare misure e analisi. La popolazione di questi oggetti è piuttosto grande, quindi si pensa di trovare diversi oggetti nonostante le limitazioni. Essi saranno dapprima individuati dai grandi telescopi a Terra prima del sorvolo di Plutone in modo da determinare le correzioni di traiettoria necessarie. Le osservazioni degli oggetti della fascia di Kuiper saranno simili a quelle condotte su Plutone, ma con minore disponibilità di potenza, luce e banda. Il 15 ottobre 2014 furono annunciati tre potenziali oggetti analizzabili dalla sonda, inizialmente denominati PT1, PT2 e PT3. Sono tutti e tre oggetti ghiacciati molto diversi da Plutone, il cui diametro stimato varia da 30 a 55 km e la distanza dal Sole da 43 a 44 UA. Le possibilità iniziali di raggiungerli senza dover ricorrere al carburante per correggere la rotta sono rispettivamente 100%, 7% e 97%. Il sorvolo di PT1 sarebbe preferibile per la posizione, mentre PT3 per la sua grandezza e luminosità, maggiori di quelle di PT1. Nel marzo del 2015 furono pubblicati degli aggiornamenti riguardo ai parametri orbitali di questi oggetti e sono state assegnate le denominazioni provvisorie: (486958) 2014 MU69 (denominazione ufficiale: 486958 Arrokoth), 2014 OS393, 2014 PN70 rispettivamente. Nell'agosto del 2015 486958 Arrokoth è stato selezionato come obiettivo della missione, la cui estensione è stata soggetta ad approvazione definitiva da parte della NASA nel corso del 2016. Quattro manovre, effettuate nell'ottobre e novembre 2015, sono state necessarie per mettere la sonda in traiettoria verso 486958 Arrokoth.[49] Sono le manovre più lontane dalla Terra effettuate su un dispositivo costruito dall'uomo. La trasmissione dei dati è avvenuta in modo simile a quanto fatto per il sistema di Plutone iniziando già un mese prima del sorvolo e mettendo in opera l'insieme degli strumenti di bordo. La durata della ritrasmissione dei dati raccolti dovrebbe durare venti mesi, alla velocità di 500Kb/s. Il sorvolo di 486958 Arrokoth è avvenuto il 1º gennaio 2019, alle 06:33 (ora italiana). Tra gli obiettivi scientifici del sorvolo c'erano la caratterizzazione della morfologia e della geologia di Arrokoth, e la mappatura della composizione della superficie (con la ricerca di ammoniaca, monossido di carbonio, metano, e ghiaccio). Le ricerche sono state svolte per i corpi orbitanti, una chioma di cometa, anelli, e l'ambiente circostante. Gli altri obiettivi comprendono:

  • Mappatura della geologia della superficie per imparare come si è formata ed evoluta
  • Misurazione della temperatura della superficie
  • Mappatura 3D della topografia e della composizione della superficie per capire in che modo è simile e diversa rispetto a comete come 67P/Churyumov-Gerasimenko e pianeti nani come Plutone
  • Ricerca di qualsiasi segno di attività, come una chioma con aspetto di nuvola
  • Ricerca e studio di satelliti o anelli
  • Misurazione della massa

Terminata la sua missione, New Horizons seguirà le sorti delle sonde Voyager 1 e 2, esplorando l'eliosfera esterna, l'elioguaina e l'eliopausa, che potrebbe raggiungere nel 2047. Comunque la New Horizons non supererà mai le sonde Voyager, anche se è partita più velocemente dalla Terra, per via della fionda gravitazionale data dai sorvoli ravvicinati di Saturno e Giove effettuati da esse. 

Juno

Juno è una missione della NASA che sta studiando il campo magnetico di Giove attraverso una sonda in orbita polare. È stata lanciata il 5 agosto 2011 a bordo di un razzo Atlas V dalla Cape Canaveral Air Force Station, in Florida. Il 5 luglio 2016 è arrivata a destinazione e a seguito dell'eccezionale scienza prodotta, nel 2021 la NASA ne ha esteso la missione sino alla fine del 2025 salvo eventuali imprevisti tecnici. Per evitare contaminazioni di batteri provenienti da Terra nella ricerca di una possibile vita aliena, e considerando che la luna Europa è una delle maggiori candidate dove cercarla, alla fine della missione Juno sarà intenzionalmente deviata nell'atmosfera gioviana, venendo completamente distrutta. Juno è stata sviluppata nell'ambito del Programma New Frontiers, che prevede la realizzazione di missioni spaziali altamente specializzate e a medio costo (non superiore a 700 milioni di dollari). Gli obiettivi principali sono:

  • capire le proprietà strutturali e la dinamica generale del pianeta attraverso la misurazione della massa e delle dimensioni del nucleo, dei campi gravitazionale e magnetico;
  • misurare la composizione dell'atmosfera gioviana (in particolare le quantità di gas condensabili come H2O, NH3, CH4 e H2S), il profilo termico, il profilo di velocità dei venti e l'opacità delle nubi a profondità maggiori di quelle raggiunte dalla sonda Galileo;
  • investigare sulla struttura tridimensionale della magnetosfera dei poli.

Si tratta della prima missione diretta su Giove a usare pannelli solari invece di generatori termoelettrici a radioisotopi. Il lancio è avvenuto il 5 agosto 2011, a bordo di un razzo Atlas V. La traiettoria studiata per la missione ha previsto un fly-by della Terra nell'ottobre del 2013, in cui è stato sfruttato l'effetto fionda gravitazionale per fornire l'incremento di velocità necessaria a raggiungere Giove. La sonda è arrivata 5 anni dopo il lancio: martedì 5 luglio 2016. Con un'opportuna sequenza di accensione dei razzi, è stata assicurata l'inserzione in un'orbita polare, con periodo di 11 giorni. La conclusione della missione, inizialmente programmata dopo il completamento di 36 orbite attorno a Giove per il 2018, è stata estesa per ulteriori 41 mesi, sino a luglio 2021. L'estensione della missione consentirà di effettuare le 36 orbite programmate che in fase operativa sono state ridotte per garantire la sicurezza degli strumenti. La missione è stata lanciata con successo venerdì 5 agosto 2011 alle 16:25 UTC (12:25 ora locale, 18:25 ora italiana) a bordo del razzo Atlas V 551 dalla piattaforma di lancio 41 della base militare di Cape Canaveral Air Force Station, in Florida. La fase di ascesa è durata complessivamente dieci minuti circa e ha immesso la sonda in un'orbita di parcheggio approssimativamente circolare, a circa 120 km di altitudine. Dopo circa trenta minuti, una seconda accensione del lanciatore Centaur ha immesso la sonda su una traiettoria di fuga dalla Terra. A circa 54 minuti dal lancio, è avvenuta la separazione della sonda dal razzo Centaur e il dispiegamento dei pannelli solari. Sono state inoltre prese le misure necessarie al controllo dell'assetto, ponendo la sonda in rotazione a una velocità compresa tra 1 e 2 giri al minuto (rpm). La manovra di fionda gravitazionale (o gravity-assist) è stata eseguita il 9 ottobre 2013. Il massimo avvicinamento è stato raggiunto alle 19:21 UTC, quando la sonda è transitata entro 558 km dalla superficie terrestre, al di sopra dell'Africa meridionale. Tuttavia un inconveniente ha indotto la sonda a entrare in modalità di emergenza (dal momento che il fly-by è avvenuto nell'ombra terrestre, la sonda ha dovuto attingere l'energia dalle batterie di bordo dato che i pannelli solari non ricevevano più la luce del Sole. Quando il livello di carica delle batterie è sceso al di sotto di un limite pre-programmato, il computer di bordo ha rilevato l'anomalia e ha impartito alla sonda l'ordine di configurarsi nel cosiddetto "safe mode", cioè spegnendo tutto ciò non strettamente necessario e orientandosi con l'antenna verso la Terra in attesa di comandi. Si è poi appurato che il limite era stato impostato in maniera troppo conservativa. Ciò non ha impedito che la manovra fosse eseguita con successo perché il gravity-assist era passivo, non era cioè prevista l'accensione dei motori. Le osservazioni che erano state programmate tuttavia potrebbero non essere state eseguite. Durante la fase di avvicinamento, la sonda ha scattato delle immagini della Luna. Era inoltre previsto di utilizzare i dati raccolti nel corso del passaggio nel tentativo di fornire una spiegazione della cosiddetta "anomalia dei fly-by con la Terra": alcune sonde che hanno eseguito manovre di fionda gravitazionale con il nostro pianeta hanno acquisito un incremento nella velocità maggiore rispetto a quello previsto matematicamente. L'acquisizione di nuovi dati sembrerebbe essenziale per determinare se ciò possa essere dovuto a imprecisioni nei software o a fenomeni fisici non ancora individuati. Ecco gli strumenti che contiene:

  • MWR (Microwave radiometer): l'obiettivo principale del radiometro sarà sondare la profonda atmosfera di Giove a onde radio tra 1,3 cm e 50 cm usando sei radiometri separati per misurare l'emissione termica del pianeta. Questo strumento è stato costruito dal Jet Propulsion Laboratory e l'investigatore principale sarà Mike Janssen.
  • JIRAM (Jovian Infrared Auroral Mapper): l'obiettivo principale del JIRAM sarà sondare gli strati superiori dell'atmosfera gioviana fino a una pressione tra 5 e 7 bar, nelle lunghezze d'onda dell'infrarosso tra 2 e 5 micrometri, usando una fotocamera e uno spettrometro. Questo strumento è stato costruito dall'Istituto Nazionale di Astrofisica (INAF) e la Selex-Galileo Avionica. L'investigatore principale per la missione sarebbe stata Angioletta Coradini, che però è deceduta il 5 settembre 2011, un mese dopo il lancio della sonda Juno.
  • FGM (Fluxgate Magnetometer): gli studi del campo magnetico avranno tre obiettivi: mappare il campo magnetico, determinare le dinamiche del nucleo di Giove, e determinare la struttura 3D della sua magnetosfera polare. Questo strumento è stato costruito dal Goddard Space Flight Center, della NASA, e l'investigatore principale sarà Jack Connerney.
  • ASC (Advanced Stellar Compass): l'obiettivo dell'ASC sarà permettere a Juno di orientarsi, in base a complesse e precise osservazioni stellari. Questo strumento è stato costruito dal Goddard Space Flight Center, della NASA e l'investigatore principale sarà Jack Connerney.
  • JADE (Jovian Auroral Distribution Experiment): JADE studierà la struttura del plasma intorno alle aurore di Giove, misurando la posizione, l'energia e la distribuzione per composizione delle particelle cariche della magnetosfera polare di Giove. Questo strumento è stato costruito dal Southwest Research Institute, e l'investigatore principale sarà David McComas.
  • JEDI (Jovian Energetic particle Detector Instrument): JEDI misurerà l'energia e la distribuzione angolare dell'idrogeno, l'elio, l'ossigeno, lo zolfo e altri ioni nella magnetosfera polare di Giove. Questo strumento è stato costruito dall'Applied Physics Laboratory e l'investigatore principale per la missione sarà Barry Maulk.
  • WAVES (Radio and Plasma Wave Sensor): questo strumento identificherà le regioni delle correnti presenti nelle aurore, per riuscire a definire le emissioni radio di Giove e l'accelerazione che subiscono le particelle presenti nell'aurora, misurando lo spettro radio e plasma nella regione dell'aurora. Questo strumento è stato costruito dall'Università dell'Iowa e l'investigatore principale sarà William Kurth.
  • UVS (Ultraviolet Imaging Spectrograph): UVS registrerà la lunghezza d'onda, la posizione e il tempo d'arrivo dei fotoni ultravioletti. Usando un rilevatore con un canale a 1024x256 micron, riuscirà a ottenere immagini spettrali delle emissioni delle aurore nella magnetosfera polare. Questo strumento è stato costruito dal Southwest Research Institute e l'investigatore principale sarà G. Randall Gladstone.
  • GSE (Gravity Science Experiment): lo scopo primario di questo strumento sarà studiare la struttura interna di Giove, ottenendo misurazioni dettagliate del suo campo gravitazionale da una posizione di orbita polare. Sarà un esperimento di radio-scienza che userà i sistemi di telecomunicazioni per rispedire dati sulla Terra riguardo alla posizione precisa di Juno rispetto a Giove. La distribuzione della massa nel nucleo di Giove dovrebbe causare variazioni locali nella sua gravità, e queste saranno rilevate grazie all'effetto doppler nello spettro radio delle onde X e Ka. Questo strumento è stato costruito da Thales Alenia Space-I e l'investigatore principale sarà Luciano Iess.[13]
  • JCM (JunoCam): una fotocamera/telescopio che includerà un carico scientifico per facilitare il coinvolgimento del pubblico e per scopi educativi. Opererà per soltanto 7 orbite intorno a Giove dato che la radiazione del campo magnetico di Giove è talmente forte da proibire l'uso prolungato. Questo strumento è stato costruito dal Malin Space Science Systems e l'investigatore principale sarà Michael C. Malin.

Oltre a questo set di strumenti scientifici all'avanguardia, la sonda porta con sé anche una placca dedicata a Galileo Galilei, fornita dall'Agenzia Spaziale Italiana. Questa è una copia in alluminio dell'originale manoscritto in cui Galileo ha descritto per la prima volta le quattro lune galileiane di Giove. Oltre a questo porta anche tre figurine LEGO, che rappresentano Galileo, Giove e sua moglie Giunone (Juno). Dal Monte Olimpo, Giunone è riuscita a guardare attraverso le nubi e capire la vera natura di suo marito, la sonda Juno spera di riuscire a fare lo stesso con il più grande gigante gassoso del Sistema Solare. Le tre figurine sono state costruite in alluminio invece della solita plastica dei LEGO per permettere loro di durare a lungo durante il volo spaziale. Differentemente dalla sonda Galileo, per Juno è prevista l'alimentazione tramite pannelli solari (potenza di picco 428 W in orbita gioviana) invece dei generatori termoelettrici a radioisotopi. Questa scelta è stata resa possibile dal significativo miglioramento negli ultimi decenni della tecnologia delle celle solari, che ne ha comportato un aumento dell'efficienza e quindi una riduzione nelle dimensioni minime necessarie perché un pannello possa sviluppare sufficiente potenza per l'alimentazione di una sonda a una tale distanza dal Sole. Inoltre è ridotta la disponibilità di generatori termoelettrici a radioisotopi per missioni spaziali. Utilizzando energia solare, la NASA evita le proteste che negli anni passati hanno accompagnato il lancio di sonde alimentate da generatori termoelettrici a radioisotopi (dovute all'accusa, confutata dalla NASA, di essere rischiosi per la salute pubblica). Va comunque notato che la NASA ha programmato l'uso di generatori termoelettrici a radioisotopi in numerosi altri progetti e la decisione di utilizzare una fonte di energia alternativa in questa missione è stata prettamente pratica ed economica piuttosto che politica.  L'Italia ha fornito alla missione due strumenti: lo spettrometro a immagine infrarosso JIRAM (Jovian InfraRed Auroral Mapper, Principal Investigator "Angioletta Coradini", dedicato all'omonima astronoma morta nel 2011, dell'INAF-IFSI, realizzato da Selex-Galileo Avionica) e lo strumento di radioscienza KaT (Ka-Band Translator, PI Luciano Iess dell'Università La Sapienza di Roma, realizzato da Thales Alenia Space-I) che rappresenta la porzione nella banda Ka dell'esperimento di gravità. Ambedue questi strumenti sfruttano importanti sinergie con gli analoghi strumenti in sviluppo per la missione BepiColombo, ottimizzando i costi e incrementando il ruolo sia scientifico sia tecnologico italiano. L'accordo NASA - ASI è stato firmato in data 21 marzo 2008. La missione prevedeva 37 orbite polari nell'arco di 20 mesi., con due orbite di 53 giorni e le successive più corte di 14 sino al termine della missione, a luglio 2018. Ad agosto 2016 si è guastato un propulsore, compromettendo la stabilità delle orbite programmate col rischio di un ulteriore guasto a discapito della Juno Cam. A ottobre un ulteriore guasto all'impianto idraulico del motore principale ha fatto entrare la sonda in safe-mode, procedura in cui tutti i sistemi non essenziali vengono disattivati e ciò ha indotto il gruppo di ricerca ad annullare l'accorciamento delle orbite, poiché l'accensione dei motori, necessaria per ridurre l'orbita, avrebbe potuto pregiudicare la missione. In tal modo son stati preservati gli obiettivi scientifici del progetto e un'eventuale estensione della missione. A luglio 2018 Juno ha quindi compiuto 20 delle 32 orbite previste intorno al gigante gassoso. 

Galileo

Galileo è stata una sonda inviata dalla NASA per studiare il pianeta Giove e i suoi satelliti. Dedicata a Galileo Galilei, venne lanciata il 18 ottobre 1989 dallo Space Shuttle Atlantis nella missione STS-34. Giunse su Giove il 7 dicembre 1995 dopo un viaggio di 6 anni, attraverso l'ausilio gravitazionale di Venere e della Terra. Galileo effettuò il primo sorvolo di un asteroide, scoprì il primo satellite di un asteroide, fu la prima sonda ad orbitare attorno a Giove e a lanciare la prima sonda nella sua atmosfera. Il 21 settembre 2003, dopo aver trascorso 14 anni nello spazio e 8 anni di servizio nel sistema gioviano, la missione venne terminata inviando l'orbiter nell'atmosfera di Giove ad una velocità di circa 50 km/s per evitare ogni possibilità di contaminare i satelliti con dei batteri provenienti dalla Terra. Nel 2018 Il lavoro svolto dalla sonda Galileo è stato rivisto ed ha fornito le prove più consistenti sull'esistenza degli enormi getti d'acqua e vapore che si producono sulla superficie di Europa, una delle lune di Giove. Il lancio della sonda Galileo è stato rinviato a causa dalla mancanza di lanci dello Space Shuttle dopo il disastro dello Space Shuttle Challenger avvenuto nel 1986. I nuovi protocolli di sicurezza introdotti dopo l'incidente comportarono l'utilizzo di uno stadio superiore a potenza ridotta, al posto dello stadio Centaur, per l'invio della sonda dall'orbita terrestre verso Giove. La velocità necessaria per raggiungere la destinazione venne raggiunta attraverso l'effetto di fionda gravitazionale una volta attraverso il pianeta Venere e due volte attorno alla Terra (la manovra è chiamata VEEGA - Venus Earth Earth Gravity Assist maneuver). Durante il volo vennero effettuate osservazioni ravvicinate dell'asteroide 951 Gaspra il 29 ottobre 1991 e dell'asteroide 243 Ida, del quale, per la prima volta per un asteroide, si è scoperto possedere un satellite proprio, Dattilo. Nel 1994 la sonda fu nella posizione ideale per osservare lo schianto dei frammenti della cometa Shoemaker-Levy 9 su Giove, mentre i telescopi dovettero attendere che i siti di impatto fossero rivolti verso la Terra. La missione primaria era costituita da uno studio di due anni del sistema gioviano. La sonda orbitò attorno al pianeta con orbite ellittiche con periodo pari a circa 2 mesi. In base alle diverse distanze da Giove, la sonda effettuò dei campionamenti della magnetosfera gioviana e le orbite permisero di effettuare dei sorvoli ravvicinati dei satelliti maggiori. Dopo la conclusione della missione principale, iniziò una estensione della missione il 7 dicembre 1997 che comprendeva una serie di sorvoli ravvicinati di Europa e di Io, il più vicino dei quali portò la sonda a 180 km da Io il 15 dicembre 2001. Le radiazioni che lo circondano furono tuttavia dannose per i sistemi di Galileo (per questo motivo i sorvoli vennero programmati nella missione estesa, dove era maggiormente accettabile un'eventuale perdita della sonda) e il 17 gennaio 2002 furono disattivate le camere dopo essere state danneggiate irreparabilmente. Gli ingegneri della NASA furono in grado tuttavia di recuperare le elettroniche del registratore interno in modo da poter trasmettere i dati fino al termine della missione. Galileo venne costruita dal Jet Propulsion Laboratory, che gestì la missione per conto della NASA. Al lancio, la massa dell'orbiter e della sonda era di 2.564 kg e raggiungeva una altezza di 7 metri. Una sezione era posta in rotazione ad una velocità di 3 giri al minuto, mantenendo la sonda stabile e in grado di raccogliere dati attraverso sei strumenti da varie direzioni. Le altre sezioni erano fisse e contenevano le camere e altri quattro strumenti che dovevano essere puntati accuratamente mentre Galileo era in viaggio nello spazio, tra cui il sistema di controllo dell'assetto. Il software che operava nel computer di bordo e che veniva regolarmente trasmesso dalla Terra dal team della missione era costituito da 650.000 linee di codice per il calcolo dell'orbita, 1.615.000 linee per l'interpretazione della telemetria e 550.000 linee per la navigazione. La sonda era controllata da un microprocessore Cosmac RCA 1802 con un clock di 1,6 MHz fabbricato su zaffiro, che è un materiale robusto per le operazioni nello spazio. Questo processore fu il primo chip CMOS a basso costo, quasi paragonabile al modello 6502 presente sui computer Apple II. Questa CPU è stata utilizzata precedentemente a bordo delle sonde Voyager e Viking Il sistema di controllo dell'assetto fu scritto nel linguaggio di programmazione HAL/S, utilizzato anche per lo Space Shuttle. Il sottosistema di propulsione era costituito da un motore principale da 400 N e dodici propulsori da 10 N, oltre che da propellente, serbatoi pressurizzati e l'impianto idraulico. I serbatoi contenevano 925 kg di idrazina e tetrossido di diazoto. I pannelli solari non erano una soluzione pratica alla distanza di Giove dal Sole (sarebbero stati necessari un minimo di 65 metri quadrati), e le batterie sarebbero state troppo ingombranti. L'energia della sonda era fornita da due generatori termoelettrici a radioisotopi, attraverso il meccanismo del decadimento radioattivo del plutonio-238. La generazione del calore derivata da questo decadimento veniva convertito in elettricità per mezzo dell'effetto Seebeck. L'elettricità era quindi fornita da questa fonte di energia affidabile, durevole e non influenzata dal freddo ambiente spaziale e dai campi radioattivi come quelli incontrati nella magnetosfera gioviana. Ogni RTG, montato su un braccio lungo 5 metri, portava 7,8 kg di 238Pu e conteneva 18 moduli di generazione del calore, progettati per resistere a molti possibili incidenti come l'incendio o l'esplosione del veicolo, il rientro nell'atmosfera con impatto a terra o in acqua e altre situazioni. Le protezioni nel caso di un potenziale rientro erano garantite da una copertura esterna di grafite e da un rivestimento di iridio delle celle a combustibile. Al lancio i generatori producevano 570 watt, decrescendo ad un ritmo di 0,6 watt per mese fino a giungere a 493 watt all'arrivo su Giove. Prima del lancio della sonda, il movimento anti-nucleare sollecitò un'ingiunzione della corte per proibire il lancio di Galileo, considerando i propulsori nucleari un rischio inaccettabile alla sicurezza pubblica. Questi sono stati usati per anni nella esplorazione planetaria senza problemi, ma gli attivisti ricordarono l'incidente del satellite russo Cosmos 954 con propulsore nucleare in Canada nel 1978 e il disastro dello Space Shuttle Challenger ha aumentato le preoccupazioni pubbliche sull'eventualità di una esplosione. Inoltre nessun veicolo con propulsore RTG aveva mai effettuato prima un volo ravvicinato attorno alla Terra ad alta velocità, come era previsto dalla manovra VEEGA. Lo scienziato Carl Sagan disse nel 1989 che: "non c'è nulla di assurdo in entrambe le parti di questo argomento." Gli strumenti scientifici per la misurazione dei campi e delle particelle erano montati sulla sezione rotante, assieme con l'antenna principale, i generatori di energia, il modulo propulsivo e la maggior parte dell'elettronica dei computer e dei controlli della sonda. I sedici strumenti (con un peso complessivo di 118 kg) includevano:

  • un magnetometro montato su un braccio lungo 11 metri per minimizzare le interferenze della sonda
  • uno strumento per rilevare particelle cariche a bassa energia del plasma, un rilevatore di onde di plasma generate dalle particelle
  • un rilevatore di particelle cariche ad alta energia
  • un rilevatore di polvere cosmica
  • un contatore di ioni pesanti
  • rilevatore per ultravioletto estremo accoppiato ad uno spettrometro UV

La sezione non rotante includeva:

  • il sistema di camere
  • lo spettrometro all'infrarosso vicino per riprendere immagini multispettrali nell'analisi chimica della superficie e dell'atmosfera dei satelliti
  • uno spettrometro all'ultravioletto per studiare i gas
  • un foto-polarimetro radiometro per misurare l'energia irradiata e riflessa.

Il sistema fotografico permetteva la ripresa di immagini dei satelliti di Giove ad una risoluzione da 20 a 1000 volte migliore rispetto a quella della sonda Voyager, a causa della maggiore vicinanza al pianeta e alle sue lune e della maggiore sensibilità del sensore CCD. La sonda atmosferica venne rilasciata dalla Galileo cinque mesi prima dell'arrivo su Giove, nel luglio 1995, ed entrò nell'atmosfera gioviana senza l'ausilio di sistemi di aerofrenaggio. Questo tipo di ingresso atmosferico fu il più difficile mai compiuto; la sonda effettuò l'ingresso ad una velocità di 47,8 km/s e venne rallentata dall'intenso attrito con l'atmosfera fino ad una velocità subsonica in appena 2 minuti. Lo scudo termico, incaricato di proteggere gli strumenti di bordo, aveva una massa di 152 kg (circa la metà dell'intera sonda) e ne perse 80 durante la discesa. Per simulare il calore e la pressione venne creato un apposito laboratorio NASA (Giant Planet Facility). In seguito la sonda dispiegò il suo paracadute e scaricò lo scudo termico. Durante la discesa di 150 km attraverso gli strati alti dell'atmosfera del pianeta, la sonda raccolse 58 minuti di dati. Questi vennero trasmessi per mezzo di una coppia di trasmettitori operanti sulla banda L ad una velocità di 128 bit/s alla sonda Galileo che li ritrasmise verso la Terra. Gli strumenti scientifici presenti, alimentati da batterie LiSO2 che fornirono una potenza di 580 watt e una capacità di 21 ampere-ora, erano:

  • atmospheric structure instrument group per la misurazione della temperatura, la pressione e la decelerazione
  • neutral mass spectrometer
  • helium-abundance interferometer per gli studi sulla composizione atmosferica
  • nefelometro per le osservazioni delle nubi
  • net-flux radiometer per la misurazione delle differenze nel flusso di energia irradiata ad una certa altitudine
  • lightning/radio-emission instrument assieme ad un rilevatore di particelle energetiche per misurare le emissioni di luce e radio associate ai fulmini e alle particelle cariche nelle fasce di radiazione del pianeta.

I dati complessivi inviati dalla sonda atmosferica furono circa 2,5 Mbit. La sonda terminò di trasmettere dati prima di raggiungere la massima distanza prevista dal collegamento; il problema fu causato probabilmente dal surriscaldamento, indicato dai sensori prima della perdita delle trasmissioni. La sonda incontrò dunque delle condizioni di temperatura e pressione superiori al previsto. Essa potrebbe essere stata infine fusa e vaporizzata al raggiungimento della temperatura critica, dissolvendosi completamente nell'atmosfera del pianeta. La sonda Galileo giunse sul pianeta il 7 dicembre 1995 e completò 35 orbite durante la missione di otto anni. I dati scientifici forniti furono molto utili per la comprensione di Giove e dei suoi satelliti da parte degli scienziati. I principali risultati scientifici sono stati i seguenti:

  • La sonda effettuò la prima osservazione di nubi di ammoniaca nell'atmosfera del pianeta.
  • Fu confermata una estesa attività vulcanica su Io, circa 100 volte maggiore a quella presente sulla Terra. Il calore e la frequenza delle eruzioni ricordano quelle che forse erano presenti sulla Terra primordiale.
  • Sono presenti complesse interazioni del plasma nell'atmosfera di Io che creano immense correnti elettriche
  • La sonda fornì diverse prove a sostegno della tesi della presenza di oceani liquidi sotto la superficie ghiacciata di Europa
  • Su Ganimede venne rilevato un campo magnetico, il primo satellite a possederne uno.
  • Vennero fornite le prove che Europa, Ganimede e Callisto possiedono un sottile strato di atmosfera.
  • Il sistema di anelli di Giove si formò dalla polvere sollevata dallo scontro di un meteorite con uno dei satelliti interni. L'anello più esterno è composto in realtà da due anelli, uno situato dentro l'altro.
  • È stata identificata la struttura globale e la dinamica della magnetosfera del gigante gassoso.

Lo star scanner era un piccolo telescopio ottico utilizzato per fornire alla sonda un riferimento nell'assetto. È stato comunque in grado, per effetto della serendipità, di effettuare scoperte scientifiche. La prima scoperta fu che era possibile rilevare particelle ad alta energia sotto forma di rumore. I dati vennero calibrati e mostrarono degli elettroni con energia superiore a 2 MeV che erano intrappolati nelle fasce del campo magnetico gioviano. La seconda scoperta venne effettuata nel 2000, mentre lo star scanner stava osservando un gruppo di stelle tra cui Delta Velorum, una stella di seconda magnitudine. La stella si indebolì in luminosità per 8 ore sotto alla soglia di sensibilità dello strumento. Successive analisi dei dati e attraverso il lavoro di astronomi amatoriali e professionisti si scoprì che Delta Velorum è una stella binaria a eclisse, con un massimo di luminosità superiore perfino ad Algol. Carl Sagan, meditando sulla questione se la vita terrestre potesse essere facilmente rilevata dallo spazio, progettò una serie di esperimenti nei tardi anni ottanta utilizzando gli strumenti della sonda da compiere durante il primo sorvolo della Terra della missione nel dicembre 1990. Dopo l'acquisizione e l'elaborazione dei dati, Sagan fece una pubblicazione sulla rivista Nature nel 1993 dove presentò i risultati degli esperimenti. La sonda Galileo trovò quelli che vengono chiamati i "criteri di Sagan per la vita", ovvero:

  • forte assorbimento di luce nell'estremità rossa dello spettro visibile (in particolare sopra i continenti), causata dall'assorbimento della clorofilla durante la fotosintesi delle piante.
  • assorbimento nello spettro dell'ossigeno molecolare, come risultato dell'attività delle piante.
  • assorbimento nello spettro dell'infrarosso provocato dal metano in quantità di 1 micromole per mole.
  • trasmissione di onde radio modulate a banda stretta, che non possono provenire da alcuna sorgente naturale

Nel dicembre 1992, durante il secondo sorvolo della Terra per la manovra gravitazionale, venne effettuato un esperimento ottico utilizzando la sonda per appurare la possibilità di effettuare comunicazioni ottiche per mezzo di impulsi di luce generati da potenti laser situati a Terra. L'esperimento venne chiamato Galileo OPtical EXperiment (GOPEX) e vennero utilizzati due siti separati per inviare impulsi laser alla sonda, uno nel Table Mountain Observatory in California e l'altro nello Starfire Optical Range nel Nuovo Messico. L'esperimento ebbe successo e i dati acquisiti potranno essere utili nel futuro per progettare connessione dati tramite laser per inviare grandi quantità di dati dalle sonde verso Terra. Questo tipo di comunicazione sarebbe stata utilizzata nella missione Mars Telecommunication Orbiter, ma la missione è stata cancellata nel 2005. Il 29 ottobre 1991, due mesi prima di entrare nella fascia degli asteroidi, la sonda incontrò per la prima volta in assoluto un asteroide passando a circa 1600 km ad una velocità relativa di 8 km/s. Vennero riprese diverse immagini di Gaspra, assieme a misurazioni effettuate con lo spettrometro NIMS per individuare la composizione e le caratteristiche fisiche. Le ultime due immagini vennero inviate a Terra nel novembre 1991 e nel giugno 1992. Questi dati rivelarono un corpo di dimensioni molto irregolari di circa 19 × 12 × 11 km con molti crateri. Ventidue mesi dopo l'incontro con Gaspra, il 28 agosto 1993 la sonda passò ad una distanza di 2400 km dall'asteroide Ida. Si scoprì che l'asteroide possiede un satellite con un diametro di 1,4 km, chiamato Dattilo, il primo satellite posseduto da un asteroide mai scoperto. Vennero effettuati i rilevamenti utilizzando la fotocamera SSI, il magnetometro e lo spettrometro NIMS. Dalle successive analisi dei dati, esso appare come un asteroide di tipo SII, differente da Ida. È stato quindi ipotizzato che Dattilo sia stato prodotto dalla fusione parziale di un corpo più grande appartenente alla famiglia Coronide. La famiglia Coronide di asteroidi, a cui appartiene Ida, è situata nella fascia principale. Per ragioni sconosciute, e che probabilmente non potranno mai essere accertate con sicurezza, la grande antenna ad alto guadagno, progettata per inviare a Terra la grande quantità di dati generata dagli strumenti della sonda, rifiutò di aprirsi e i tentativi, durati mesi, furono tutti vani. La causa fu attribuita al disseccamento del lubrificante dei meccanismi di apertura dell'antenna, avvenuta durante gli anni in cui la sonda rimase in un deposito in attesa di essere lanciata (il lancio originale era previsto per il 1986). Si dovette quindi far fronte alla situazione utilizzando la sola antenna a basso guadagno, che era molto piccola e permetteva un flusso di poche decine di bit al secondo (a differenza dei 134 kBps che sarebbero stati disponibili con l'antenna principale). Il problema fu risolto mediante nuovi algoritmi di compressione, che permisero di impacchettare i dati in meno spazio. Inoltre, una certa percentuale dei dati previsti fu tagliata. Le immagini, che occupano un'enorme quantità di spazio, subirono i tagli maggiori. Nell'ottobre 1995 il registratore digitale a quattro tracce costruito dalla Odetics Corporation rimase bloccato in modalità di riavvolgimento per 15 ore. Anche se il registratore era ancora funzionante, il malfunzionamento poteva aver danneggiato una porzione di nastro al termine della bobina. Questa porzione di nastro fu dichiarata off limits e non venne utilizzata per la registrazione dei dati. Questo problema avvenne qualche settimana prima dell'inserimento nell'orbita gioviana, e obbligò gli ingegneri a sacrificare l'acquisizione dei dati dalle osservazioni di Io e Europa durante l'inserimento in orbita, per registrare solo i dati inviati dalla discesa della sonda. Nel novembre 2002, dopo l'unico incontro della sonda con il satellite Amaltea la missione fu nuovamente ostacolata dai problemi relativi al registratore: dopo 10 minuti dal momento di minima distanza con la luna di Giove la sonda terminò improvvisamente la raccolta dei dati, spegnendo tutti gli strumenti ed entrando in modalità di sicurezza. Apparentemente questo fu causato dall'esposizione all'ambiente estremamente radioattivo attorno al pianeta. Anche se la maggior parte dei dati furono registrati, il registratore si rifiutò di riprodurre i dati. Attraverso attente analisi compiute in diverse settimane a terra su un identico registratore presente nei laboratori, venne determinato che la causa del malfunzionamento era da imputare ad una riduzione dell'emissione di luce in tre LED posizionati nell'elettronica del dispositivo. La diagnostica di bordo aveva interpretato il problema come un incorretto posizionamento della testina di codifica (motor encoder wheel). Il Team di Galileo riuscì a risolvere il problema, ripristinando il funzionamento del registratore per periodi di quattro ore. Vennero quindi riprodotti e trasmessi a Terra i dati riguardanti il satellite Amaltea. L'ambiente radioattivo di Giove provocò più di 20 anomalie di funzionamento, oltre ai problemi descritti sopra. A fronte di un superamento dei limiti di radiazione tollerate dal progetto della sonda di un fattore 3, Galileo riuscì a sopravvivere. Molti strumenti scientifici subirono un incremento di rumore mentre erano all'interno di un raggio di 700 000 km dal pianeta, e ad ogni avvicinamento a Giove i cristalli di quarzo che venivano usati per i riferimenti di frequenza subirono degli spostamenti di frequenza permanenti. Un rilevatore di rotazione entrò in avaria e i dati che provenivano dal giroscopio erano influenzati dalle radiazioni. La camera a stato solido SSI iniziò a produrre immagini totalmente bianche dopo che la sonda venne coinvolta nel 2000 da un'eccezionale espulsione di massa dalla corona solare. Gli effetti più importanti furono un reset dei computer, ma si riuscì a trovare un rimedio per ogni problema. La sonda atmosferica aprì il paracadute circa un minuto dopo il previsto, con conseguente perdita limitata nella rilevazione dei dati nell'atmosfera superiore. Dopo vari controlli delle registrazioni, venne determinato che il problema era stato provocato probabilmente da un collegamento errato nel sistema di controllo del paracadute. L'apertura fu quindi da attribuire alla fortuna.

Rosetta

Rosetta è stata una missione spaziale sviluppata dall'Agenzia spaziale europea, lanciata nel 2004 e finita nel 2016. L'obiettivo della missione fu, dopo un cambio dovuto alla posticipazione del lancio, lo studio della cometa 67P/Churyumov-Gerasimenko. La missione era formata da due elementi: la sonda vera e propria Rosetta e il lander Philae, atterrato il 12 novembre 2014 sulla superficie della cometa 67P/Churyumov Gerasimenko. La missione si è conclusa il 30 settembre 2016, con lo schianto programmato dell'orbiter sulla cometa e disattivazione del segnale. Nel maggio 1985 il Solar System Working Group dell'ESA propose che una delle missioni più importanti per il programma Horizon 2000 dovesse essere una missione di prelievo di campioni cometari con ritorno sulla Terra. A fine 1985 fu costituito un gruppo di lavoro misto ESA/NASA per definirne gli obiettivi scientifici. Nel 1986 l'arrivo della cometa di Halley fu seguito da diverse sonde provenienti da più nazioni, fornendo dati preziosi per la preparazione della nuova missione. La NASA si concentrò sullo sviluppo del Comet Rendezvous Asteroid Flyby detta anche missione CRAF, mentre l'ESA studiò una missione che prevedesse l'inseguimento del nucleo di una cometa e il trasporto di alcuni frammenti a terra. Entrambe le missioni erano basate sulla precedente missione Mariner Mark II in modo da ridurre i costi di sviluppo. Nel 1992 la NASA decise di eliminare il progetto CRAF per via di limitazioni impostale dal congresso degli Stati Uniti d'America. Nel 1993 si rese palese che una missione con il trasporto di campioni sulla terra sarebbe stata troppo costosa per il bilancio ESA e quindi si decise di riprogettare la missione rendendola simile alla defunta missione CRAF statunitense. La missione fu riprogettata prevedendo un'analisi in loco con l'utilizzo di un lander. La missione sarebbe dovuta partire il 12 gennaio 2003 per raggiungere la cometa 46P/Wirtanen nel 2011. Tuttavia i progetti furono modificati quando l'Ariane 5, il vettore scelto per lanciare Rosetta, fallì un lancio l'11 dicembre 2002. I nuovi progetti previdero il lancio il 26 febbraio 2004 e il raggiungimento nel 2014 della cometa 67P/Churyumov-Gerasimenko. Dopo due lanci cancellati la missione Rosetta finalmente partì il 2 marzo 2004 alle 7:17 UTC. Sebbene fosse cambiata la data del lancio lo scopo della missione restò il medesimo. La sonda Rosetta doveva entrare in un'orbita molto lenta intorno alla cometa e progressivamente rallentare la sua orbita fino ad arrestarla in modo da prepararsi alla discesa del lander. Durante questa fase, la superficie della cometa è stata mappata da VIRTIS, l'occhio principale della sonda, per individuare il luogo migliore per l'atterraggio del lander. Il lander (inizialmente chiamato temporaneamente RoLand (Rosetta Lander), mentre un altro concept era chiamato Champollion, in seguito è stato definitivamente battezzato Philae) è atterrato sulla cometa con una velocità di 1 m/s (3,6 km/h). Appena raggiunta la superficie, un sistema di arpioni avrebbe dovuto ancorarlo alla superficie in modo da impedirgli di rimbalzare nello spazio. A causa di un problema tecnico, per assicurare il lander alla cometa, sono state utilizzate invece alcune trivelle. Dopo essersi attaccato alla cometa il lander avviò alcune analisi scientifiche:

  • caratterizzazione del nucleo;
  • determinazione delle componenti chimiche presenti;
  • studio delle attività della cometa e dei suoi tempi di sviluppo.

Questa è la tabella di marcia della missione, come pianificata prima del lancio:

  • Primo sorvolo della Terra (marzo 2005)
  • Sorvolo di Marte (febbraio 2007)
  • Secondo sorvolo della Terra (novembre 2007)
  • Sorvolo dell'asteroide 2867 Šteins (5 settembre 2008)
  • Terzo sorvolo della Terra (novembre 2009)
  • Sorvolo dell'asteroide 21 Lutetia (10 luglio 2010)
  • Ibernazione nello spazio profondo (luglio 2011 - gennaio 2014)
  • Avvicinamento alla cometa 67P/Churyumov-Gerasimenko (gennaio-maggio 2014)
  • Mappatura della cometa / caratterizzazione (agosto 2014)
  • Atterraggio sulla cometa (12 novembre 2014)
  • Inseguimento della cometa intorno al Sole (novembre 2014 - dicembre 2015)
  • schianto sulla cometa (30 settembre 2016)

L'obiettivo principale della missione è la cometa 67P/Churyumov-Gerasimenko; inizialmente avrebbe dovuto prelevare dei campioni e riportarli a terra (il nome iniziale della missione era Comet Nucleus Sample Retur), ma in seguito, come spesso accade nelle missioni spaziali per problemi di costi, tempi e tecnologia, lo scopo finale della missione è stato modificato: orbitare intorno alla cometa da agosto 2014 a dicembre 2015, rilasciando a novembre 2014 una sonda secondaria destinata ad atterrare sulla cometa per analizzarne la composizione. La sonda fu battezzata con il nome latino di Rosetta, per ricordare la stele di Rosetta, manufatto dell'antichità che riportava uno stesso testo in tre scritture per due lingue diverse, tra cui l'egizio in geroglifici, che permise a Champollion di tradurre l'antica lingua egizia, fino ad allora rimasta incomprensibile. Analogamente, la sonda Rosetta fa da anello di congiunzione tra i meteoriti, che gli scienziati possono studiare sulla Terra, e il sistema solare, che gli scienziati non possono visitare personalmente, ma che le comete attraversano continuamente. Il lander è stato battezzato Philae, dal nome latino di un'isoletta sul Nilo, File, dove Giovanni Battista Belzoni ritrovò, nel 1817, un obelisco con iscrizioni in greco e geroglifici. L'obelisco fu utile, con la stele di Rosetta, per la decifrazione dei geroglifici. Il luogo di atterraggio è stato battezzato Agilkia[4], altra isola del Nilo dove venne spostato il tempio di Iside, perennemente sommerso nell'isola di File a seguito della costruzione della vecchia diga di Assuan. La sonda Rosetta ha inviato centinaia di immagini della cometa. Il 4 novembre 2014 l'ESA ha annunciato che tutte le immagini sono disponibili al pubblico con licenza Creative Commons, permettendone così l'utilizzo libero e senza pagamento di royalties e diritti su siti e blog. Si tratta di un cambiamento notevole rispetto alle missioni precedenti, quando ESA rilasciava le immagini delle proprie missioni al pubblico in minima quantità e in genere dopo molti mesi dal completamento delle missioni stesse. Il 2014 è stato "l'anno della stampa 3D", ossia l'anno in cui la stampa 3d è diventata alla portata di tutti, grazie allo scadere di vari brevetti che fino ad allora avevano reso costosissime le stampanti 3D. Il 3 ottobre 2014 l'ESA ha rilasciato pubblicamente il modello 3D della cometa ricostruito da Rosetta tramite le varie immagini scattate a distanza ravvicinata dalle telecamere OSIRIS e NVCAM. La concomitanza dei due eventi ha reso possibile a chiunque nel mondo di stamparsi in proprio, o stampare tramite appositi servizi online, modelli in scala della cometa. Il lander Philae è stato sganciato dalla sonda Rosetta a una velocità ben precisa grazie a un particolare meccanismo di sgancio. Ha raggiunto la cometa in circa 7 ore percorrendo una traiettoria in caduta libera, guidato dalla flebile e irregolare gravità della cometa, che ruota su se stessa con un periodo di 12,7 ore. Una volta sganciato dalla sonda madre, Philae si è immesso su di un'orbita tale da impattare la cometa a una velocità compresa tra 1,1 e 1,5 m/s (4-5 km/h). Il lander è atterrato sulla cometa senza l'uso di retrorazzi: un carrello di atterraggio ammortizzato ed equipaggiato con arpioni meccanismi di ancoraggio a vite ha garantito l'adesione alla superficie nonostante la bassissima gravità della cometa (10−3 m/s², un decimillesimo dell'accelerazione di gravità sulla Terra). Durante l'operazione di aggancio, un piccolo motore a gas compresso posizionato sulla testa della sonda, dotato di capacità di spinta di 1 m/s DeltaV, avrebbe dovuto spingere la sonda verso il corpo celeste, mantenendola in posizione e impedendo eventuali rimbalzi, ma un malfunzionamento del motore ne ha reso impossibile l'utilizzo; l'attracco alla cometa doveva essere garantito da due arpioni che, purtroppo, non sono stati scagliati. Infatti, progettati per essere scagliati a velocità prossime a 400 km/h, devono essere azionati in contemporanea al motore ad idrazina per compensare il rinculo. Al momento, quindi, è precariamente agganciato grazie alle tre "trivelle da ghiaccio" posizionate sui piedini. Philae al momento si trova in una posizione dalla quale è impossibile prelevare dati dalla cometa, trovandosi in posizione orizzontale e avendo un trapano di soli 12 cm che non raggiunge la parete che è posizionata frontalmente alla sonda. A causa di ciò si è deciso di attendere fino ad agosto 2016, data in cui i raggi solari avrebbero potuto raggiungere i pannelli solari della sonda che si sarebbe potuta così riattivare e ruotare su se stessa, andando a contatto con una parete del crepaccio della cometa 67P/Churymov-Gerasimenko e riuscendo così a prelevare dei nuovi dati sulla cometa. Purtroppo le batterie di Philae non si sono potute ricaricare abbastanza per questo scopo. Il particolare carrello di atterraggio e la bassa gravità fanno sì che il lander possa atterrare con un angolo di inclinazione fino a 30°. Un volano permette di mantenere l'assetto della sonda durante il percorso da Rosetta alla cometa. Inizialmente la sonda era stata progettata per atterrare sulla cometa 46P/Wirtanen, che ha una gravità molto più bassa, per cui la velocità di atterraggio sarebbe stata quasi la metà, e l'energia cinetica della sonda sarebbe stata quasi 10 volte più bassa. Il fallimento di un razzo vettore Ariane nel 2002 causò ritardi nella missione e la perdita della finestra di lancio per 46P/Wirtanen, così fu cambiata la destinazione in 67P/Churyumov-Gerasimenko, e i progettisti dovettero adattare il carrello di atterraggio alla maggiore gravità della nuova cometa, ad esempio riducendo a +/-5° l'orientabilità della sonda una volta atterrata. Il lander Philae è dotato del sistema SD2 (Sample Drilling and Distribution), che ha lo scopo di raccogliere i campioni del suolo e di trasferirli, all'interno della sonda, ai diversi dispositivi che eseguono le analisi in-situ. SD2 include un sistema miniaturizzato di perforazione e campionamento (drill/sampler tool). Il driller/sampler è un dispositivo miniaturizzato, meccanicamente complesso, che perfora il terreno fino alla profondità di 230 mm e ricava un campione dal fondo. Il dispositivo, costruito in acciaio e titanio, è in grado di trattenere e poi rilasciare il materiale, grazie a un meccanismo coassiale interno. Il campione viene deposto in un sistema elettromeccanico (volume checker) che ne misura la quantità; infine il materiale viene messo all'interno dei vari analizzatori, tramite un meccanismo a carosello. Le capacità di perforazione tengono conto dell'ampia imprevedibilità delle reali condizioni di resistenza della superficie della cometa, che può arrivare alla consistenza del ghiaccio omogeneo, limitando comunque la forza di perforazione per evitare sollecitazioni al sistema di ancoraggio.


Crea il tuo sito web gratis! Questo sito è stato creato con Webnode. Crea il tuo sito gratuito oggi stesso! Inizia