Betelgeuse

Esistono miliardi di stelle nel cosmo, molto diverse per massa, volume e densità. Esistono tuttavia stelle speciali: una di queste è Betelgeuse. Seguici su Eagle sera per saperne di più!



Betelgeuse: cos'é?

Betelgeuse (IPA: /betelˈʤɛuze/[14][15]; α Ori / α Orionis / Alfa Orionis) è la seconda stella più luminosa della costellazione di Orione, dopo Rigel, e mediamente la decima più brillante del cielo notturno vista ad occhio nudo, data la sua magnitudine apparente fissata sul valore medio di +0,58.È uno dei vertici dell'asterismo del Triangolo invernale, assieme a Sirio e Procione. Betelgeuse è una supergigante rossa di classe spettrale M1-2 Iab, ovvero una stella in una fase già piuttosto avanzata della sua evoluzione, che mostra episodi di variabilità dovuti a pulsazioni quasi regolari dell'astro con un periodo tra i 2070 e i 2355 giorni. La sua distanza dalla Terra era stimata sino a pochi anni fa sui 427 anni luce (a.l.), ma recenti ri-misurazioni della parallasse hanno suggerito un valore maggiore, pari a circa 600-640 a.l.; sulla base di questo nuovo valore è stato necessario aggiornare buona parte dei suoi parametri stellari, in particolare il raggio. Il diametro angolare misurato dalla Terra suggerisce, da questa distanza, che Betelgeuse sia una stella di dimensioni colossali, addirittura una tra le più grandi conosciute: il suo raggio misurerebbe in media 4,6 UA, pari a circa 1000-1050 volte il raggio solare. Data la grande superficie radiante, Betelgeuse possiede anche una forte luminosità, oltre 135 000 volte quella della nostra stella, che la rende anche una tra le stelle più luminose in assoluto. Tuttavia questa luminosità non è imputabile esclusivamente alla vasta superficie; per questa ragione gli astronomi propendono a ritenere che la stella possieda una massa elevata, pari a 15-20 volte quella del Sole. Pertanto è possibile che la stella concluderà la sua esistenza esplodendo in una supernova. Alcune indagini condotte nella seconda metà degli anni ottanta suggerivano l'eventualità che Betelgeuse fosse un sistema multiplo, costituito almeno da tre componenti; però successive osservazioni non hanno confermato quest'ipotesi. Il nome Betelgeuse deriva dall'arabo يد الجوزاء Yad al-Jawzāʾ, "la mano di al-Jawzāʾ (Gigante)", corrotto poi, a seguito di un errore di traslitterazione in epoca medievale, in بد الجوزاء Bad al-Jawzāʾ (più propriamente ابط الجوزاء Ibţ al-Jawzāʾ), assumendo il significato riconosciuto di "l'ascella" o "la spalla del Gigante".

Osservazione e storia delle osservazioni

Betelgeuse è una stella dell'emisfero boreale, infatti possiede una declinazione di +7° 24', ma è comunque abbastanza vicina all'equatore celeste da risultare osservabile da tutte le aree della Terra, ad eccezione della parte più interna del continente antartico; a nord invece la stella appare circumpolare ben oltre il circolo polare artico.[26][N 2] Si può distinguere Betelgeuse facilmente anche dalle grandi città: infatti è la decima stella più brillante del cielo se vista ad occhio nudo, la nona considerando singolarmente le componenti dei sistemi multipli; inoltre fa parte dell'inconfondibile costellazione di Orione, di cui costituisce il vertice nord-orientale, e spicca rispetto alle altre per il suo colore arancione intenso che contrasta con l'azzurro tipico delle altre stelle luminose di quest'area di cielo. Costituisce inoltre il vertice nord-occidentale del grande e brillante asterismo del Triangolo invernale. Betelgeuse inizia a scorgersi bassa sull'orizzonte orientale nelle serate tardo-autunnali di inizio dicembre ed è durante i mesi di gennaio e febbraio che l'astro domina il cielo notturno, essendo la stella di colore rosso vivo più brillante dell'inverno. Il mese di maggio invece la vede tramontare definitivamente sotto l'orizzonte ovest, tra le luci del crepuscolo; torna ad essere visibile ad est, poco prima dell'alba, nel mese di agosto. Betelgeuse appare come la seconda stella più luminosa della costellazione alla quale appartiene: la sua magnitudine media è di +0,58; Rigel (β Ori), la stella più brillante di Orione, posta nel vertice sud-occidentale della costellazione, in posizione diametralmente opposta a Betelgeuse, è di magnitudine +0,12. Betelgeuse, Rigel e Deneb (α Cyg) sono le più distanti fra tutte le stelle di prima magnitudine, che in totale sono circa una ventina nel cielo notturno: Betelgeuse si trova a circa 640 anni luce dalla Terra, segno questo che anche la sua reale luminosità è molto elevata. La sua escursione di luminosità, apprezzabile solo nell'arco di alcuni anni, è percepibile quando si raffronta la sua brillantezza con quella delle stelle vicine più luminose: al momento della minima luminosità, la sua magnitudine raggiunge un valore di +1,2, diventando simile in brillantezza a Polluce (β Gem), di magnitudine +1,15, e poco più luminosa della vicina Bellatrix (γ Ori), la spalla destra di Orione, di magnitudine +1,64.; nella fase di massimo invece sale fino ad una magnitudine di +0,3, paragonabile a quella della biancastra Procione (α CMi) e molto simile a quella di Rigel.  La stella è ben conosciuta sin dall'antichità, data la sua grande luminosità e il suo caratteristico colore arancione-rossastro. Nel 1982 un gruppo di archeologi scoprì in Cina una serie di relazioni astronomiche, intitolate Shi Chi e redatte da un certo Sima Qian nel I secolo, che descrivevano la stella come un astro dal tipico colore bianco-giallastro. Tuttavia già Claudio Tolomeo nel suo Almagesto, risalente alla metà del secolo successivo, la descriveva come una stella tipicamente rossa, assieme a Sirio, sul cui colore bianco-azzurro molto intenso hanno dibattuto numerosi studiosi, Antares - α Sco -, Aldebaran - α Tau -, Arturo - α Boo - e Polluce, tutte effettivamente di un colore che va dall'arancione al rosso intenso. L'astrofisico cinese Fang Lizhi, dando credito allo scritto del I secolo, ipotizzò che la stella potesse essersi evoluta in supergigante rossa in questo lasso di tempo; ma la teoria ebbe poco seguito in quanto sembrava contraddire i modelli sull'evoluzione stellare, secondo cui la transizione avviene in un arco temporale molto più lungo. È possibile che questo cambiamento di colore della stella, da rosso a giallo-bianco, sia dovuto all'espulsione di uno strato superficiale di polveri e gas. La variabilità della stella è stata scoperta nel 1836 da John Herschel che la descrisse per la prima volta in uno scritto, pubblicato nel 1849, dal titolo Outlines of Astronomy, in cui trattò dell'aumento e della diminuzione di luminosità dell'astro nel periodo compreso tra il 1836 e il 1840. Figlio dell'astronomo anglo-tedesco William Herschel, egli notò nel 1849 che il ciclo di variabilità era divenuto più breve, caratterizzato da picchi più alti di luminosità in cui la magnitudine apparente della stella arrivava a rivaleggiare con quella di Rigel, come avvenne nel massimo del 1852. Le osservazioni compiute nel resto del XIX secolo e durante tutto il XX secolo hanno permesso di registrare dei massimi insolitamente alti, con un intervallo di pochi anni, cui fanno eccezione gli anni compresi tra il 1957 e il 1967 in cui si sono registrate solo piccole variazioni. Nel 1919 Albert Michelson e Francis Pease montarono un interferometro, inventato da Michelson, sul telescopio da 2,5 metri dell'Osservatorio di Monte Wilson. Michelson compì una serie di misurazioni del diametro angolare della stella, ottenendo una misura pari a 0,044 secondi d'arco ("). Mettendo in relazione la misura con il valore allora noto della parallasse, 0,018", fu possibile stimare il raggio della stella, che risultava avere un valore di 3,84 × 108 km; il valore però era affetto da una cospicua incertezza, soprattutto per quanto riguardava l'effettivo oscuramento al bordo, molto accentuato, ed eventuali errori durante la misurazione stessa. Osservazioni condotte più recentemente alle lunghezze d'onda del visibile mostrano che in realtà il raggio di Betelgeuse varia tra 0,0568" e 0,0592". Nel 1975 l'utilizzo della tecnica dell'interferometria a macchie consentì agli astronomi di scoprire la presenza di formazioni attive, presumibilmente analoghe alle macchie solari, sulla superficie della stella; Betelgeuse divenne quindi la prima stella, oltre al Sole, sulla cui superficie sia stata accertata la presenza di macchie fotosferiche. Nella seconda metà degli anni ottanta è stata ipotizzata, a seguito di alcune osservazioni interferometriche, la presenza di eventuali compagni stellari attorno a Betelgeuse, ma successivi studi non hanno confermato pienamente il tutto. La stella divenne, verso la fine degli anni ottanta e l'inizio degli anni novanta, oggetto di osservazioni nel visibile e nell'infrarosso grazie alla nuova tecnica dell'interferometria con maschera d'apertura, che rivelò sulla superficie della stella la presenza di formazioni luminose, definite in seguito hot spots (punti caldi), che si riteneva fossero dovute a moti convettivi in prossimità della superficie stellare; si tratta delle primissime immagini della superficie di una stella diversa dal Sole. Nel 1995 la Faint Object Camera del Telescopio spaziale Hubble fu puntata in direzione della stella per catturarne delle immagini agli ultravioletti ad alta risoluzione; venne così ottenuta la prima immagine ad alta risoluzione del disco di una stella esterna al sistema solare: il grado di dettaglio di quest'immagine agli ultravioletti non può essere raggiunto con nessun telescopio di terra. L'immagine mostra una macchia brillante indicante una regione a temperatura più alta, nella parte sudoccidentale della superficie stellare; le osservazioni visive hanno mostrato che l'asse di rotazione di Betelgeuse ha un'inclinazione di circa 20° rispetto alla direzione della Terra e un angolo di posizione di circa 55°. Si è dunque ipotizzato che il punto caldo osservato nell'immagine ultravioletta potesse coincidere con una delle regioni polari della stella. A causa del fenomeno della precessione degli equinozi, le coordinate di Betelgeuse variano sensibilmente col trascorrere del tempo. L'ascensione retta di Betelgeuse è pari a 5h 55m, ossia estremamente prossima alle 6h, che corrisponde al punto più settentrionale che l'eclittica raggiunge a nord dell'equatore celeste e dunque segna anche il punto più settentrionale che un oggetto celeste, che si trova presso di essa, può raggiungere. Dunque Betelgeuse si trova alla sua declinazione più settentrionale, che corrisponde a circa +7°. Nell'epoca precessionale opposta alla nostra, avvenuta circa 13 000 anni fa, Betelgeuse aveva una coordinata di ascensione retta pari a 18h, che corrisponde alla declinazione più meridionale che un oggetto può raggiungere; sottraendo ai +7° attuali un valore di 47°, pari al doppio dell'angolo di inclinazione dell'asse terrestre, si ottiene la declinazione di −40°. Questo significa che 13 000 anni fa Betelgeuse era una stella piuttosto meridionale e poteva essere osservata solo a sud del 50º parallelo nord. Dunque, per buona parte dell'epoca precessionale completa, Betelgeuse non sarebbe osservabile da molte regioni dell'emisfero boreale. A questo movimento sarebbe poi da aggiungere il moto proprio della stella, che però ha effetti minimi sulla sua posizione apparente, data la grande distanza. Betelgeuse ha raggiunto la massima declinazione nord, assieme a quasi tutta la costellazione di Orione, che si trova ora a cavallo dell'equatore celeste. Tra circa 5 000 anni, l'intera figura di Orione, compresa Betelgeuse, si troverà interamente nell'emisfero australe.

Dove si trova Betelgeuse

La maggior parte delle stelle della costellazione di Orione appartiene ad un'associazione stellare, l'associazione Orion OB1, di cui fanno parte quasi tutte le stelle blu visibili nella costellazione, in particolar modo quelle che costituiscono la Cintura e la Spada, che si trova in stretta associazione con il vasto complesso di nubi molecolari giganti noto come complesso di Orione. L'associazione si suddivide in quattro sottoassociazioni di stelle OB di differenti età, dalle più giovani fino a quelle più antiche, formatesi a partire da 10 milioni di anni fa.[44] Betelgeuse si trova all'incirca a metà strada tra questa struttura (da cui dista circa 200 pc, ~ 650 anni luce) e il sistema solare da cui dista circa 600-640 anni luce. Per lungo tempo la distanza della stella, calcolata mediante il metodo della parallasse, era stimata intorno ai 427 anni luce; tuttavia una nuova misurazione della parallasse, compiuta tramite il satellite Hipparcos e le osservazioni condotte nel visibile e nel continuum radio dal Very Large Array (VLA), colloca la stella alla distanza ritenuta più plausibile; tuttavia la misura è affetta ancora da una certa incertezza, per via delle caratteristiche intrinseche della stella che rendono difficoltosa la misurazione della parallasse, che ammette un intervallo di distanze compreso tra 595 e 790 a.l.[4] Il moto proprio della stella rispetto al mezzo interstellare circostante è pari a circa 30 km/s ed è rivolto a NE, verso la vicina costellazione dei Gemelli, in direzione del piano galattico. Questo alto valore di moto proprio, associato a valori altrettanto elevati di velocità radiale, rende Betelgeuse una stella moderatamente run-away; questi valori sono simili a quelli delle stelle che costituiscono il raggruppamento di 25 Ori, situato nella sottoassociazione Orion OB1a. Le proiezioni del moto della stella a ritroso nel tempo hanno mostrato che la stella non avrebbe mai avuto alcune relazioni con l'associazione OB e che anzi si sarebbe originata in una regione di spazio al di fuori del disco galattico; tuttavia quest'ipotesi non è stata presa in considerazione, dal momento che le regioni di formazione stellare si trovano fondamentalmente nei pressi del piano della Galassia. Gli astronomi hanno formulato una seconda ipotesi, secondo cui la stella si sia formata o in un'associazione, oggi estinta, che si trovava a SE di OB1a, oppure, considerando anche l'età stimata per Betelgeuse pari a circa 10 milioni di anni[5] e coincidente con l'età stimata per l'associazione, che la stella si sia formata nei pressi dell'associazione, ma che abbia subito due accelerazioni gravitazionali che l'hanno portata nell'attuale posizione: una prima che l'avrebbe spostata dalla regione di formazione a circa 200 pc dal sistema solare e una seconda, avvenuta circa un milione di anni fa, responsabile dell'attuale moto proprio. Questa seconda accelerazione sarebbe stata causata dall'esplosione, nella regione compresa tra l'associazione e la vicina bolla di Eridano, di una o più supernovae, le cui onde d'urto avrebbero modificato il moto di rivoluzione dell'astro attorno al centro galattico in un moto lineare. Betelgeuse e il complesso si trovano all'interno della Via Lattea e precisamente nel Braccio di Orione, un braccio galattico secondario posto tra il Braccio di Perseo e il Braccio del Sagittario al cui interno è situato anche il nostro sistema solare; i due bracci sono separati da circa 6500 anni luce di distanza.

Come funziona Betelgeuse?

Betelgeuse è una stella di particolare interesse per gli astronomi: infatti è la terza stella per diametro angolare apparente visto dalla Terra, dopo il Sole ed R Doradus, una gigante rossa più piccola di Betelgeuse che appare più grande solo in virtù della sua minor distanza dal sistema solare. Inoltre è una delle poche stelle che i telescopi, sia di terra sia spaziali, sono riusciti a risolvere come un disco e non solamente come un punto luminoso. Betelgeuse è stata una delle prime stelle il cui diametro sia stato misurato tramite l'utilizzo di tecniche interferometriche, come l'interferometria a macchie e l'interferometria a maschera d'apertura, che hanno permesso di determinarne il diametro angolare apparente: 59,2 mas (milliarcosecondi) nel visibile, 54,7 ± 0,3 mas nell'infrarosso. La discrepanza di quasi cinque millisecondi d'arco è dovuta al fatto che l'osservazione nell'infrarosso non prende in considerazione ogni eventuale contributo luminoso causato dai punti caldi, che appaiono meno apprezzabili a queste lunghezze d'onda, e abbatte in maniera considerevole gli effetti dell'oscuramento al bordo; ed è proprio l'accentuato oscuramento al bordo della stella, associato al fatto che la stella stessa come tutte le supergiganti rosse non possiede un bordo ben definito, a rendere estremamente difficoltoso definire con esatta precisione le dimensioni della stella. La combinazione di questo dato con la distanza dell'astro, stimata in 640 anni luce, consente di determinare con una certa approssimazione il raggio effettivo della stella che sarebbe compreso mediamente tra le 990 e le 1000 volte quello solare, corrispondenti a 4,6 unità astronomiche (UA). Queste dimensioni rendono Betelgeuse una delle stelle più grandi conosciute: se la stella si trovasse al posto del Sole la sua superficie si addentrerebbe nella fascia principale degli asteroidi, arrivando ad inglobare l'orbita di Giove. Le grandi dimensioni sono anche, in parte, all'origine dell'elevata luminosità della stella, che nel visibile è circa 9400 volte la luminosità solare; combinando questo valore con la distanza, si ottiene una magnitudine assoluta pari a −5,14. Tuttavia, se si tiene in considerazione l'emissione alle altre lunghezze d'onda dello spettro elettromagnetico, in particolare nell'infrarosso, la stella raggiunge una luminosità nettamente superiore, oltre 135 000 volte quella del Sole; ciò la rende una tra le stelle più luminose conosciute. La ragione di questa grande emissione nell'infrarosso è dovuta alla bassa temperatura superficiale (circa 3500 K) che, in conformità con la legge di Wien, fa sì che il picco dell'emissione luminosa si collochi nell'infrarosso; infatti l'astro emette solamente il 13% della sua energia radiante sotto forma di luce visibile. Se l'occhio umano fosse sensibile a tutte le lunghezze d'onda dello spettro elettromagnetico, Betelgeuse sarebbe la stella più brillante del cielo ed apparirebbe con una magnitudine apparente vicina a quella del pianeta Venere (−4,6). La grande superficie radiante non è sufficiente a spiegare questa luminosità; pertanto si stima che la stella possieda una massa piuttosto elevata, che gli astronomi hanno quantificato, grazie a simulazioni computerizzate, in 15-20 masse solari. Tuttavia il limite di incertezza è ancora piuttosto elevato, tanto che alcuni astronomi non considerano remota la possibilità che la stella abbia una massa inferiore, intorno a 10-12 volte la massa del Sole. Considerando insieme dimensioni e massa, la densità della stella risulta estremamente bassa: infatti, sebbene il volume dell'astro sia oltre 160 milioni di volte il volume del Sole, il rapporto massa-volume dà una densità media di 2-9 × 10−8 volte quella della nostra stella,[6] una densità addirittura inferiore al miglior vuoto spinto realizzabile sulla Terra. La bassissima densità è tuttavia una caratteristica comune a tutte le supergiganti rosse. I risultati di alcuni studi, resi noti nel corso del 214º convegno dell'American Astronomical Society, hanno mostrato che Betelgeuse ha subito dal 1993 al 2009 una contrazione delle sue dimensioni che sembra essere indipendente dalla sua variabilità, pari al 15%. Infatti le indagini a lungo termine, condotte nell'infrarosso a λ=11,15 µm dall'Infrared Spatial Interferometer dell'osservatorio di Monte Wilson, hanno dimostrato che il raggio della stella si è progressivamente rimpicciolito negli ultimi sedici anni, passando da 5,6 a 4,8 UA, una riduzione pari alla distanza che separa Venere dal Sole. La causa di questa contrazione è oggetto di studio. Alcuni astronomi ipotizzano che possa trattarsi di un'oscillazione dimensionale a lungo termine, dovuta a un collasso gravitazionale o a un'espulsione di materia collegata alla sua imminente esplosione in supernova. Altri invece ritengono che più semplicemente la stella, in seguito alla sua rotazione, stia ora mostrando una differente porzione della sua superficie molto irregolare. Betelgeuse è una tra le prime stelle, eccezion fatta per il Sole, sulla cui fotosfera, ovvero la sua superficie visibile, siano state osservate da un telescopio delle strutture attive. La scoperta è stata effettuata e puntualizzata in più tappe, dapprima grazie a campagne osservative condotte a Terra mediante l'uso di interferometri a maschera d'apertura, poi dallo spazio tramite il telescopio spaziale Hubble, quindi grazie a osservazioni ad altissima risoluzione effettuate dal Cambridge Optical Aperture Synthesis Telescope. La fotosfera di Betelgeuse presenta un fortissimo oscuramento al bordo, associato a un aspetto piuttosto asimmetrico ed irregolare; questo aspetto è attribuito alla presenza dei cosiddetti punti caldi, ovvero delle regioni a temperatura molto maggiore, anche di oltre 2000 K, di quella delle regioni circostanti. Si ritiene che i punti caldi siano prodotti da gigantesche celle convettive distribuite in maniera disomogenea su tutta la superficie. Le osservazioni spettroscopiche mostrano delle variazioni nella velocità e nella temperatura delle celle, su un tempo di circa 400 giorni, che delineano il sistematico, ma caotico, moto di risalita e ricaduta del materiale fotosferico al loro interno. La spiegazione più plausibile di queste variazioni risiede nelle oscillazioni di breve durata che accompagnano la formazione di nuove celle convettive giganti sulla superficie della stella. La formazione delle celle giganti sarebbe da imputarsi alla presenza del campo magnetico, che si ritiene possa essere generato da una dinamo locale a piccola scala presumibilmente simile alla dinamo solare. Al di sopra della fotosfera si estende una vasta atmosfera che si sviluppa a partire dalla superficie sino a oltre 34 unità astronomiche, quasi 10 volte il raggio della stella. L'atmosfera di Betelgeuse è stata studiata fondamentalmente mediante le osservazioni condotte dal VLA nelle onde radio alla lunghezza di 7 mm. Le osservazioni condotte in questa banda hanno mostrato che l'atmosfera è costituita quasi totalmente da un gas rarefatto la cui temperatura possiede un valore prossimo alla temperatura fotosferica a una distanza dalla stella pari al suo raggio e quindi tende a diminuire man mano che aumenta la distanza dalla stella. Questa tendenza è stata confermata dalle osservazioni nell'ultravioletto del telescopio Hubble che però ha riscontrato che la bassa atmosfera, la cromosfera che si estende dalla superficie della stella sino ad una distanza da essa di poco inferiore al suo raggio, possiede una temperatura di gran lunga superiore, pari a 5500 ± 400 K. La ragione di questa temperatura insolitamente alta è stata imputata dagli astrofisici alla collisione tra il flusso di gas che si originerebbe dalla sommità delle celle convettive fotosferiche, da cui si dipartono dei vasti pennacchi, e il gas atmosferico; questo fenomeno sarebbe anche il principale responsabile della forte asimmetria morfologica riscontrata nelle osservazioni dell'atmosfera della supergigante. Inoltre la rilevazione delle linee di assorbimento dell'Hα ha suggerito agli astrofisici che la cromosfera abbia un'estensione piuttosto vasta e mostri delle espansioni e delle contrazioni a intervalli di tempo irregolari. I dati raccolti dallo strumento AMBER del Very Large Telescope dell'European Southern Observatory (ESO) hanno permesso di individuare delle macroturbolenze e dei vigorosi spostamenti convettivi di gas in varie aree dell'atmosfera stellare a ridosso della fotosfera, macroturbolenze che generano delle bolle di gas di dimensioni paragonabili a quelle della stella stessa. Inoltre è stato visualizzato un esteso involucro asimmetrico, denominato MOLsphere (contrazione dell'inglese molecular sphere, sfera molecolare), che si estende a una distanza dalla stella pari a 1,4−1,5 volte il suo raggio. Al suo interno sono stare rilevate cospicue quantità di CO e CN, corroborando i risultati dell'indagine spettroscopica che ha rilevato la presenza di una certa abbondanza di carbonio, azoto ed ossigeno, elementi di natura endogena che sarebbero stati nucleosintetizzati in eccesso come intermedi del ciclo CNO e poi portati in superficie dai moti convettivi degli strati interni della stella. È stata scoperta anche la presenza di un tenue inviluppo costituito da vapore acqueo, che appare piuttosto debole all'osservazione nell'infrarosso medio (λ= 5-25 µm). I modelli fisici formulati mostrano che la stella ha una metallicità, ovvero una quantità di elementi più pesanti dell'elio, simile a quella del Sole. Betelgeuse è circondata da un'estesa nube di polveri e gas che essa stessa ha emesso. Queste polveri si generano all'interno della MOLsphere, dove la temperatura è sufficientemente bassa (~ 1500 K) da consentire l'aggregazione degli atomi in molecole e complessi sovramolecolari. La pressione di radiazione dovuta alla forte luminosità della stella trasporta poi questi granuli di polvere verso lo spazio circostante, dando luogo ad un vento stellare dalla velocità piuttosto bassa di circa 17 km/s e conseguentemente molto polveroso. Tramite il vento la stella perde massa al ritmo molto elevato di circa 10−7-10−6 M☉ l'anno. Le immagini ad altissima risoluzione ottenute nel visibile e nell'infrarosso vicino tramite l'ottica adattiva NACO del VLT e la tecnica del lucky imaging hanno permesso di far luce sui meccanismi alla base della perdita di massa, comune a tutte le supergiganti rosse. Infatti le immagini hanno mostrato la presenza di un vasto pennacchio di gas che si diparte dal quadrante sudoccidentale della superficie di Betelgeuse e si estende nello spazio circostante per circa sei volte il raggio della stella, pari alla distanza che separa il Sole da Nettuno. La scoperta di questo pennacchio ha evidenziato come la perdita di massa non abbia luogo omogeneamente da tutta la superficie stellare, ma da specifiche aree che coincidono con le bolle convettive giganti dell'atmosfera. La materia espulsa dal vento va a costituire attorno alla supergigante una serie di nebulosità e anelli di polveri che presentano delle strutture piuttosto complesse e irregolari. Un primo, parziale anello di polveri si trova a una distanza dalla stella pari a tre volte il suo raggio; a circa 400 UA è presente un altro addensamento nebulare, costituito prevalentemente da polveri di alluminio e silicati e un accumulo più consistente è stato trovato ad una distanza di 650 UA. A 12 000 UA di distanza si ha un ulteriore addensamento di polveri, mentre a una distanza tripla (36 000 UA) è stata riscontrata anche la presenza di una grande quantità di gas. Infine più esternamente è stata scoperta l'esistenza di un guscio di polveri che si estende sino a una distanza di circa 3,3 anni luce (~1 pc) dalla stella. Poco oltre lo strato di polveri, a una distanza di circa 3,5 anni luce dall'astro, è stato individuato, mediante osservazioni agli infrarossi condotte dal telescopio IRAS e più recentemente dal telescopio spaziale AKARI, progettato e costruito dall'agenzia spaziale giapponese (JAXA), un bow shock che si origina dalla collisione tra il vento della stella e il mezzo interstellare circostante. Se osservata a λ = 60 µm relativamente stretta, questa formazione appare asimmetrica e orientata lungo la direzione del moto della stella; la massa complessiva della materia confinata in questa regione sembra ammontare a 0,14 M☉. Betelgeuse è una variabile semiregolare, un particolare tipo di variabile pulsante caratterizzato da imprevedibili e spesso elevate fluttuazioni nella luminosità con una ciclicità di qualche mese, che nel caso di Betelgeuse è tra 150 e 300 giorni, che si sovrappongono a periodi di variazione luminosa quasi regolari più estesi, in questo caso di 2070-2355 giorni ovvero circa 5,7 anni; durante questo lasso temporale la stella oscilla senza preavviso intorno alla sua magnitudine apparente media pari a 0,5, con escursioni luminose variabili da ciclo a ciclo. I dati in possesso dell'American Association of Variable Star Observers (AAVSO) mostrano che la magnitudine della stella raggiunse il minimo di 0,2, durante i massimi del 1933 e del 1942, quando arrivava a rivaleggiare con la luminosità di Rigel, mentre il massimo di 1,2, con i minimi del 1927 e del 1941, quando raggiungeva una brillantezza appena superiore a quella della vicina Bellatrix. Le osservazioni registrate in altre epoche, in particolare quelle di John Herschel, mostrarono che in altri periodi Betelgeuse arrivò ad avere anche un intervallo di luminosità ben più ampio di quello misurato dall'AAVSO, con punte di −0,1 nel massimo del 1852 quando superò la luminosità di Rigel, e minimi di luminosità con magnitudine 1,3 e punte anche di 1,5 e 1,6. Dunque è una stella variabile di particolare interesse osservativo: infatti nessun'altra stella di prima grandezza mostra delle marcate variazioni di luminosità in intervalli di tempo così relativamente brevi come Betelgeuse. I meccanismi alla base delle variazioni luminose della stella non sono stati ancora completamente chiariti, sebbene siano stati oggetto di studi intensivi; per questo motivo è stato necessario ricorrere allo sviluppo di modelli fisico-matematici che spiegassero il fenomeno osservato. Il modello più accreditato da parte degli astronomi prevede che la stella vada incontro per alcuni anni a una lenta espansione, seguita poi da una repentina contrazione degli strati più esterni, che ne provocano una variazione nella superficie radiante, nella temperatura e dunque nell'emissione luminosa. Le supergiganti rosse manifestano delle pulsazioni per via di instabilità atmosferiche: quando la stella è più contratta, l'atmosfera assorbe una maggiore quantità dell'energia irradiata dalla fotosfera, sicché si riscalda e, in conformità alle leggi dei gas, si espande. Durante la fase di espansione, la densità dell'atmosfera diminuisce; di conseguenza l'energia luminosa l'attraversa con maggiore facilità, mentre il gas si raffredda e man mano si contrae nuovamente. Tuttavia il ciclo di pulsazioni avviene su Betelgeuse con una certa asimmetria, probabilmente dovuta al contributo dei punti caldi cromosferici. Durante il ciclo pulsatorio, Betelgeuse varia le proprie dimensioni di oltre il 60%, passando da circa 840 ad oltre 1400 R☉. Inoltre la variabilità della stella sembra esser correlata a periodi di grosse espulsioni di massa e maggior formazione di polveri, così come all'oscillazione, con un andamento secondario di 420 giorni, dei punti caldi riscontrati in superficie. Alcune particolarità riscontrate nelle osservazioni interferometriche, in particolare l'interferometria a macchie, hanno indotto alcuni astronomi ad ipotizzare la presenza di eventuali compagni stellari in orbita attorno a Betelgeuse. Nel 1985 l'astrofisica Margarita Karovska suggerì la presenza di una possibile compagna ad una distanza di 2,5 raggi stellari dalla primaria, con un periodo orbitale di 2,2 anni.[20] Le osservazioni interferometriche da lei stessa condotte l'anno successivo avrebbero individuato la presenza di una seconda compagna, consentendo di determinare con migliore approssimazione i parametri orbitali di entrambe: la prima si troverebbe ad una distanza angolare di 0,06 secondi d'arco dalla principale, con un angolo di posizione di 273°; la seconda a 0,51 secondi d'arco (circa 40-50 UA di distanza dalla primaria), con un angolo di posizione di 278°. La Karovska calcolò una possibile orbita per l'ipotetica compagna più vicina: adottando un valore di 20 M☉ per la massa di Betelgeuse e 4 per la compagna, le due stelle dovrebbero orbitare attorno al comune baricentro in un periodo di 2,08 anni e disterebbero 4,7 UA l'una dall'altra. Stando alle rilevazioni, la componente minore dovrebbe essere una gigante gialla di tipo almeno G5, avente un raggio 10 volte quello del Sole; è stato anche ipotizzato un trasferimento di massa tra le due componenti, attraverso un disco di accrescimento attorno alla più piccola. La grande vicinanza di questa ipotetica stella ha indotto alcuni astronomi ad ipotizzare che essa, anche se solo per una minima parte del proprio periodo orbitale, potrebbe attraversare gli strati più esterni della supergigante, non solamente la sua atmosfera; questo fenomeno sarebbe possibile per via della bassissima densità dei livelli esterni della supergigante rossa. Le successive osservazioni non hanno confermato la presenza di questi compagni attorno alla stella; pertanto, in attesa di future scoperte che facciano luce con maggior chiarezza su tale eventualità, Betelgeuse continua ad essere considerata una stella singola. Betelgeuse si trova nelle ultime fasi della propria evoluzione: la fase di supergigante rossa, altamente instabile, è infatti il preludio all'estinzione dell'astro. Gli astronomi ritengono che Betelgeuse, per via della sua massa, durante la sua fase di sequenza principale sia stata una stella di classe B, dal tipico colore bianco-azzurro, e che sia rimasta in questa fase per almeno 8-10 milioni di anni. Conclusa questa fase di stabilità, nell'ultimo milione di anni la stella avrebbe subito una serie di collassi che ne avrebbero innescato le successive reazioni nucleari, provocandone alla fine l'espansione allo stato attuale di supergigante rossa. Data la sua grande massa, gli astronomi ritengono che la stella concluderà la propria esistenza esplodendo in una brillantissima supernova di tipo II. Non si sa con esattezza quando ciò avverrà; le opinioni sono differenti. Alcuni vedono la variabilità della stella come un indizio del fatto che si trovi già nella fase di fusione del carbonio in ossigeno e neon e sia quindi a qualche migliaio di anni dalla fine. Altri rifiutano questa ipotesi, ritenendo che sarà necessario ancora qualche milione di anni prima che si verifichi l'esplosione; altri ancora non ritengono improbabile che il fenomeno possa essere già avvenuto, ma escludono che sarà visibile entro un tempo relativamente breve (su scala umana), al massimo qualche secolo. Pur non essendo noto quando Betelgeuse diverrà una supernova, è possibile determinare tramite modelli fisico-matematici la complessa serie di eventi che precederà e seguirà l'esplosione della stella. Come modello è stata presa l'esplosione di una tipica supernova di tipo II-P, caratterizzata da una curva di luce che mostra un appiattimento (plateau) indicante un periodo in cui la luminosità diminuisce ad un ritmo molto lento. La stella si è mantenuta in vita grazie alle reazioni di fusione nucleare (nucleosintesi) all'interno del suo core, che hanno sprigionato l'energia necessaria a contrastare la forza di gravità che altrimenti avrebbe fatto collassare l'astro su se stesso. Mentre le stelle meno massicce (come il Sole), nelle fasi seguenti la sequenza principale fondono l'idrogeno in uno strato superiore al nucleo di elio e, solamente qualora la massa sia sufficiente, possono arrivare a fondere l'elio in carbonio ed ossigeno,[80] le stelle massicce, conclusa la fusione dell'elio in carbonio, raggiungono nei loro nuclei le condizioni di temperatura e pressione necessarie a far avvenire la fusione di quest'ultimo in elementi più pesanti: ossigeno, neon, silicio e zolfo. I prodotti finali della nucleosintesi sono il nichel-56 (56Ni) e il cobalto-56 (56Co), risultato del processo di fusione del silicio. Nichel-56 e cobalto-56 decadono rapidamente in ferro-56 (56Fe), che si deposita inerte al centro della stella. Quando il nucleo ferroso raggiunge una massa superiore al limite di Chandrasekhar, esso diviene instabile e collassa in una stella di neutroni; la formazione della stella di neutroni provoca l'emissione di un flusso di circa 1046 joule di neutrini, che impiega circa un'ora per attraversare lo strato esterno di idrogeno della stella e fuggire nello spazio circostante. Il collasso genera una serie di onde d'urto che, dopo aver impiegato circa un giorno per raggiungere la superficie stellare, ne provocano lo smembramento, dando luogo ad un improvviso flash di radiazione ultravioletta di intensità pari a 100 miliardi di volte la luminosità solare. Nelle due settimane successive all'esplosione, la luminosità totale della supernova subisce inizialmente una diminuzione, per poi raggiungere la brillantezza massima, mentre il materiale espulso si espande, raffreddandosi, fino ad una distanza pari a 100 UA dalla stella. A questo punto, la supernova permane in uno stato stazionario (simboleggiato dal plateau della curva di luce) per circa 2-3 mesi, durante i quali la luminosità assoluta si attesta su un valore pari a un miliardo di volte quella del Sole, mentre la temperatura effettiva si mantiene sui 6000 K.[77] Dalla distanza di 640 anni luce, Betelgeuse sarà visibile dalla Terra con una magnitudine apparente di −12, pari a quella di un quarto di Luna. In questa fase Betelgeuse risulterà visibile anche durante le ore diurne e tali condizioni perdureranno per diversi mesi, compatibilmente col tasso di diminuzione della luminosità. Gli anni immediatamente seguenti saranno segnati dal decadimento radioattivo del cobalto-56 in ferro-56. Nel millennio successivo all'esplosione gli strati esterni che costituivano la stella si espandono sino a raggiungere i 20 anni luce di estensione, diventando sempre più freddi e rarefatti e poco luminosi; si forma così il resto di supernova, che arricchirà il mezzo interstellare circostante degli elementi pesanti prodotti dalla stella sia durante le sue ultime fasi di vita sia nel corso dell'esplosione. Nonostante la relativa vicinanza, si ritiene che le radiazioni emesse dall'esplosione di Betelgeuse non causeranno grossi danni alla biosfera del nostro pianeta. Per via della sua luminosità nel cielo notturno e del suo colore rosso pieno Betelgeuse ha avuto una certa influenza sulla cultura e sulla mitologia di diversi popoli antichi e moderni. Il suo intenso colore rosso le ha fruttato numerosi epiteti bellici, come la Stella Marziale, e nell'astrologia è considerata foriera di onori militari o civili. 

Etimologia

Il nome Betelgeuse viene dall'arabo يد الجوزاء (Yad al-Jawzā), "la mano di al-Jawzā, tradotto come "il Gigante" e "Colui che sta al Centro": tali epiteti, con cui ci si riferiva dapprima alla vicina costellazione dei Gemelli, sono poi passati a designare la costellazione di Orione. L'esperto di nomenclatura stellare tedesco Paul Kunitzsch notò tuttavia come gli Arabi caratterizzassero la costellazione con attributi femminili; pertanto, la traduzione più consona di al-Jawzā sarebbe "Colei che sta al Centro". È oggetto di dibattito quale sia effettivamente questo "centro" cui si fa riferimento nel nome: alcuni sono propensi a ritenere che si tratti del "Centro del Cielo", dato che la costellazione di Orione giace sull'equatore celeste; altri ritengono che originariamente la costellazione o una parte di essa dovesse simboleggiare una particolare razza ovina, la quale era caratterizzata da una macchia o cintura bianca nella pelliccia nella regione addominale o comunque in una porzione centrale del corpo.[24] Kunitzsch ritiene che il nome attuale derivi dalla corruzione, durante l'epoca medioevale, del nome originario in بد الجوزاء Bad al-Jawzā, dovuta ad un errore di traslitterazione dall'arabo al latino (Bedalgeuze) causato forse dalla confusione della lettera ي, yāʼ, che codifica il fonema /y/, con la lettera ب, bāʼ, che codifica il suono /b/;[6] le ragioni di questo errore sarebbero da ricondurre al fatto che le due lettere, ad inizio parola, sono molto simili e differiscono solo per un segno diacritico (la yāʼ possiede due punti inferiori, mentre la bāʼ ne possiede uno solo). Così trasformata, la perifrasi venne ad assumere il significato di "ascella di Colei che sta al Centro", sebbene più correttamente in lingua araba il termine "ascella" sia ابط Ibţ; sarebbe questo il motivo che portò nel 1899 Richard Hinckley Allen ad ipotizzare, erroneamente, che fosse ابط الجوزاء Ibţ al-Jawzā il nome originario della stella. L'errore non ricevette alcun emendamento, preservandosi e trasformandosi durante il Rinascimento in Bait al-Jawzā, da cui deriva la forma corrente. In tedesco il nome della stella presenta un'ulteriore corruzione, dovuta all'errata interpretazione della "l" come una "i": il risultato è Beteigeuze. Nel corso del diciannovesimo e nei primi anni del XX secolo godettero di una discreta diffusione anche altre varianti del nome, come Betelgeuze o Betelgeux, ma entrambe sono state rimpiazzate da Betelgeuse, che si è affermato come grafia standard. Altri nomi con cui la stella è nota sono:

  • in arabo al-Dhirāˁ ("il braccio"), al-Mankib ("la spalla") ed al-Yad al-Yamin ("la mano destra");
  • in hindi Ardra;[87]
  • in farsi Besn ("il braccio");
  • in copto Klaria ("bracciale");
  • in giapponese 平家星 ("La stella del clan Heike");
  • altri nomi derivati dall'originale arabo: Bed Elgueze, Beit Algueze, Ied Algeuze e Yedelgeuse.

Non sembrano esistere leggende specifiche su Betelgeuse, forse perché gran parte della mitologia si è sviluppata più sull'intera figura di Orione che non su una sua specifica stella.[86] È noto che l'antico nome sanscrito della stella era बहु Bahu, che significa "il Braccio"; tuttavia R. H. Allen sostiene che il nome si riferisse non ad un arto umano, ma che si trattasse di una delle zampe di un'antilope predata dal vicino Mrigavyadha, il cacciatore impersonato dalla stella Sirio. Robert Burnham, Jr. nota come lo scrittore di horror-fantasy Howard Phillips Lovecraft identifichi Betelgeuse come la patria dei "Grandi Antichi", creature infinitamente sagge venerate come divinità nel Ciclo di Cthulhu, mentre gli Elfi della Terra di Mezzo dei romanzi di J. R. R. Tolkien chiamino o Betelgeuse o Aldebaran col nome Borgil, "la Stella di Fuoco". Betelgeuse è spesso citata in racconti a carattere fantascientifico. Nella serie di romanzi Guida galattica per gli autostoppisti di Douglas Adams, Ford Prefect, uno dei personaggi, proviene da un mondo "nelle vicinanze di Betelgeuse",[94] mentre nel romanzo Il pianeta delle scimmie Betelgeuse è la stella attorno a cui orbita il pianeta Soror, sul quale è ambientata la storia. Nella serie Star Trek, la stella è sede di un sistema planetario posto entro l'area di influenza della Federazione dei Pianeti Uniti, sul cui secondo pianeta (Betelgeuse II) vive una razza aliena piuttosto oscura, i Betelgeusiani. Dal nome della stella trae spunto anche il nome di un pianeta dell'universo di Dune di Frank Herbert: si tratta di Bela Tegeuse, il "quinto pianeta di Kuentsing". Betelgeuse (pronunciato /ˈbiːtəldʒuːz/, come l'inglese beetle juice, "succo di scarafaggio") è anche il nome di uno spiritello mascalzone, protagonista del film Beetlejuice - Spiritello porcello di Tim Burton. Il nome dello spirito, stando ad una dichiarazione dello sceneggiatore del film, Michael McDowell, deriva proprio da quello della stella. La stella è nominata anche in numerosi manga, sia come astro principale di un sistema planetario fittizio, sia come nome dei personaggi. In 2001 Nights si immagina l'esistenza di un pianeta terrestre orbitante attorno alla supergigante: il suo clima è caldo tropicale (ovviamente quando Betelgeuse non era una supergigante il corpo celeste doveva risultare ghiacciato), con scarsità di ossigeno nell'atmosfera ed una flora che si è evoluta fino a sviluppare la capacità di proiettare nello spazio "arche" biologiche cariche di semi dirette verso pianeti abitabili in sistemi stabili. Alcuni personaggi ipotizzano anche l'esistenza di altri pianeti in passato, che sarebbero stati inglobati dalla stella durante la sua espansione. Ne I Cavalieri dello Zodiaco, Betelgeuse è il cavaliere, mandato dal Grande Sacerdote, che scocca la freccia d'oro che raggiungerà il petto di Lady Isabel (la dea Atena), mentre i protagonisti iniziano la scalata alle Dodici Case, avventurandosi verso la Prima Casa di Ariete.

Approfondiamo: supernove

Una supernova (plurale supernove, in latino supernovae; abbreviata come SN o SNe) è un'esplosione stellare più energetica di quella di una nova. Le supernove sono molto luminose e causano una emissione di radiazione che può per brevi periodi superare quella di una intera galassia. Durante un intervallo di tempo che può andare da qualche settimana a qualche mese, una supernova emette tanta energia quanta è previsto che ne emetta il Sole durante la sua intera esistenza e, per una quindicina di secondi, raggiunge una temperatura di cento miliardi di Kelvin, ma perché ciò avvenga, la stella deve avere una massa almeno nove volte superiore a quella del nostro Sole. L'esplosione espelle la maggior parte o tutto il materiale che costituisce la stella a velocità che possono arrivare a 30 000 km/s (10% della velocità della luce), producendo un'onda d'urto che si diffonde nel mezzo interstellare. Ciò si traduce in una bolla di gas in espansione che viene chiamata resto di supernova. Il termine nova, che significa "nuova" in latino, si riferisce a ciò che appare essere una nuova stella brillante nella volta celeste. Il prefisso "super-" distingue le supernove dalle nove ordinarie che sono molto meno luminose. La parola supernova fu utilizzata per la prima volta da Walter Baade e Fritz Zwicky nel 1931. Le supernove possono essere innescate in due modi: o tramite la riaccensione improvvisa dei processi di fusione nucleare in una stella degenere o tramite il collasso del nucleo di una stella massiccia. Nonostante nessuna supernova sia stata osservata nella Via Lattea da SN 1604, i resti di supernova esistenti indicano che eventi di questo tipo occorrono mediamente circa tre volte ogni secolo nella nostra galassia. Essi giocano un ruolo significativo nell'arricchimento del mezzo interstellare di elementi chimici pesanti. Inoltre, la bolla di gas in espansione creata dall'esplosione può portare alla formazione di nuove stelle. L'interesse di Ipparco di Nicea per le stelle fisse potrebbe essere stato ispirato dall'osservazione di una supernova, almeno secondo quanto riferisce Plinio il Vecchio. La prima testimonianza scritta di una supernova riguarda SN 185, che fu osservata dagli astronomi cinesi nel 185 d.C.. La supernova più brillante di cui si abbia notizia è SN 1006, che fu dettagliatamente descritta da astronomi cinesi e islamici. La supernova SN 1054, anch'essa minuziosamente osservata, risultò nella Nebulosa Granchio. Le supernove SN 1572 e SN 1604, le ultime a essere state osservate nella Via Lattea, ebbero un notevole impatto sullo sviluppo delle teorie astronomiche in Europa perché esse dimostrarono che l'idea aristotelica che il cielo stellato fosse qualcosa di immutabile non era corretta[14]. Giovanni Keplero iniziò ad osservare SN 1604 il 17 ottobre 1604: era la seconda supernova osservabile durante la sua generazione, dopo che SN 1572 era stata osservata da Tycho Brahe in direzione della costellazione di Cassiopea. Dopo il miglioramento delle tecniche di costruzione dei telescopi, si cominciò ad osservare supernove appartenenti ad altre galassie, a cominciare dal 1885, quando S Andromedae fu osservata nella galassia di Andromeda. Il nome super-nova fu usato per la prima volta nel 1931 da Walter Baade e Fritz Zwicky durante una conferenza tenuta al Caltech e poi nel 1933 durante un congresso della American Physical Society. Nel 1938 il trattino fu lasciato cadere e il nome moderno cominciò ad essere utilizzato. Poiché le supernove sono eventi relativamente rari, perfino all'interno di una intera galassia (per esempio all'interno della Via Lattea ne occorre uno ogni 30 anni circa), per raccogliere un numero di campioni sufficientemente ampio è necessario monitorare un numero elevato di galassie. Una supernova non può essere predetta con sufficiente margine di accuratezza. Di solito, quando sono scoperte, l'esplosione è già in corso. Molti degli interessi scientifici che le supernove rivestono - per esempio, come candele standard per la misurazione delle distanze - richiedono che venga osservato il picco di luminosità. È perciò importante cominciare ad osservare la supernova prima che essa raggiunga il picco. Gli astronomi non professionisti, essendo in numero molto maggiore rispetto a quelli professionisti, giocano un ruolo importante nella scoperta precoce delle supernove, soprattutto mediante l'osservazione di galassie vicine mediante telescopi ottici e mediante il confronto con immagini pregresse. Verso la fine del novecento gli astronomi hanno cominciato a utilizzare sempre più massicciamente telescopi e CCD controllati da computer per rilevare le supernove. Anche se questi sistemi sono popolari presso gli astronomi dilettanti, esistono anche installazioni professionali come il Katzman Automatic Imaging Telescope. Il Supernova Early Warning System (SNEWS) è invece una rete di rilevatori di neutrini progettata per dare un avviso precoce di una supernova nella nostra galassia. I neutrini sono particelle subatomiche che vengono prodotte in modo massiccio durante l'esplosione di una supernova e che, non interagendo in maniera significativa con il mezzo interstellare, arrivano sulla Terra in grande quantità. Alcuni studi precoci su quella che era allora creduta essere semplicemente una nuova categoria di novae furono condotti negli anni trenta da Walter Baade e Fritz Zwicky presso l'osservatorio di Monte Wilson. Gli astronomi americani Rudolph Minkowski e Fritz Zwicky dal 1941 cominciarono a sviluppare lo schema della moderna classificazione delle supernove. Durante il XX secolo sono stati elaborati modelli per i differenti tipi di supernove osservabili e la comprensione della loro importanza nei processi di formazione stellare sta crescendo. Negli anni sessanta gli astronomi scoprirono che le esplosioni delle supernove potevano essere utilizzate come candele standard, utilizzabili come indicatrici di distanze astronomiche. In particolare le supernove forniscono importanti informazioni sulle distanze cosmologiche. Alcune delle supernove più distanti osservate recentemente appaiono più deboli di quanto ci si aspetterebbe. Ciò supporta l'ipotesi che l'espansione dell'universo stia accelerando. Per ricostruire le date in cui sono avvenute le supernove di cui non si hanno testimonianze scritte sono state sviluppate diverse tecniche: la data di Cassiopeia A è stata determinata dalla eco luminosa prodotta dall'esplosione mentre l'età del resto di supernova RX J0852.0-4622 è stata stimata mediante misurazioni relative alla sua temperatura e all'emissione di raggi gamma prodotti dal decadimento del titanio-44. Nel 2009 nei ghiacci antartici sono stati scoperti nitrati il cui deposito è avvenuto in corrispondenza della comparsa di supernove passate[32][33]. I programmi di ricerca per le supernove sono di due tipi: i primi sono rivolti a eventi relativamente vicini, i secondi a eventi più lontani. A causa dell'espansione dell'universo la distanza di oggetti remoti può essere conosciuta misurando l'effetto Doppler esibito dal loro spettro (ossia il loro spostamento verso il rosso): in media gli oggetti più distanti recedono a velocità maggiori e quindi hanno un maggiore spostamento verso il rosso. La ricerca quindi si divide fra supernove a grande o piccolo spostamento verso il rosso; la divisione fra queste due classi cade più o meno nella fascia di spostamento compresa fra z = 0,1-0,3. La ricerca sulle supernove a grande spostamento verso il rosso si concentra solitamente sulla descrizione delle loro curve di luce; esse sono utili come candele standard al fine di fare predizioni di carattere cosmologico. Per l'analisi dello spettro di una supernova è invece più utile rivolgere la propria attenzione alle supernove a piccolo spostamento verso il rosso. Queste ultime risultano importanti anche per descrivere la parte vicina all'origine del diagramma di Hubble, che mette in relazione lo spostamento verso il rosso con la distanza delle galassie visibili. La scoperta di una nuova supernova viene comunicata al Central Bureau for Astronomical Telegrams della Unione Astronomica Internazionale che provvede a diffondere una circolare in cui le viene assegnato un nome. Esso è composto dalla sigla SN seguita dall'anno della scoperta e da un suffisso di una o due lettere. Le prime 26 supernove dell'anno ricevono le lettere maiuscole dalla A alla Z; quelle successive sono designate mediante suffissi di due lettere minuscole: aa, ab, e così via. Per esempio, SN 2003C designa la terza supernova annunciata nell'anno 2003. L'ultima supernova del 2012 è stata SN 2012ik, cioè è stata la 245ª ad essere scoperta. Dal 2000 gli astronomi professionisti e dilettanti hanno scoperto centinaia di supernove ogni anno (390 nel 2009, 341 nel 2010, 290 nel 2011). Le supernove osservate in epoche storiche non hanno suffisso, ma sono seguite solo dall'anno della scoperta: SN 185, SN 1006, SN 1054, SN 1572 (chiamata Nova di Tycho) e SN 1604 (stella di Keplero). Dal 1885 viene aggiunta una lettera alla notazione, anche se è stata osservata una sola supernova in quell'anno (per esempio, SN 1885A, SN 1907A, ecc.). Prima del 1987 raramente erano necessari suffissi di due lettere, ma dal 1988 essi sono sempre stati necessari. Le supernove sono state classificate sulla base delle caratteristiche della loro curva di luce e delle linee di assorbimento dei diversi elementi chimici che appaiono nei loro spettri. Una prima divisione viene effettuata sulla base della presenza o dell'assenza delle linee dell'idrogeno. Se lo spettro della supernova presenta tali linee (chiamate serie di Balmer nella porzione visibile dello spettro), essa viene classificata come di Tipo II; altrimenti è di Tipo I. Ognuna di queste due classi è a sua volta suddivisa in base alla presenza di altri elementi chimici o alla forma della curva di luce (cioè del grafico che rappresenta la magnitudine apparente dell'oggetto in funzione del tempo). Le supernove di Tipo I sono suddivise in base ai loro spettri: le supernove di tipo I-A mostrano le linee di assorbimento del silicio nei loro spettri, quelle di tipo I-B e I-C no. Le supernove di Tipo I-B esibiscono evidenti linee dell'elio neutro, contrariamente a quelle Tipo I-C. Le curve di luce sono simili, sebbene quelle di tipo Ia siano più luminose al loro picco. In ogni caso, la curva di luce non viene considerata un fattore importante nella classificazione delle supernove di tipo I. Un piccolo numero di supernove di Tipo I-A mostra caratteristiche non comuni come luminosità differenti da quelle delle altre supernove della loro classe o curve di luce allungate. Di solito, ci si riferisce a queste supernove collegandole al primo esemplare che ha manifestato delle anomalie. Per esempio, la supernova SN 2008ha, meno luminosa del normale, è classificata come di tipo SN 2002cx, dato che quest'ultima supernova è stata la prima, fra quelle osservate, a presentare queste caratteristiche. Anche le supernove di Tipo II possono essere suddivise in ragione dei loro spettri. La maggior parte di esse, infatti, mostra linee di emissione dell'idrogeno molto allargate, indicanti velocità di espansione molto elevate, dell'ordine di migliaia di chilometri al secondo; alcune, invece, come SN 2005gl, possiedono spettri aventi linee dell'idrogeno sottili e vengono chiamate supernove di Tipo IIn, dove n abbrevia la parola inglese narrow, che significa "stretto". Quelle che hanno linee dell'idrogeno allargate sono a loro volta suddivise sulla base della loro curva di luce. Quelle di tipo più comune hanno un caratteristico appiattimento della curva, poco dopo il picco; ciò sta a indicare che la loro luminosità resta quasi invariata per alcuni mesi prima di declinare definitivamente. Queste supernove sono designate con la sigla II-P, dove P abbrevia la parola plateau, che significa "altopiano". Meno comunemente le supernove con linee dell'idrogeno allargate mostrano un costante declino della luminosità dopo il picco. Esse sono designate con la sigla II-L, dove L abbrevia la parola linear, sebbene la curva di luce non sia in realtà una linea retta. Una piccola porzione delle supernove di Tipo II, come SN 1987K e SN 1993J, può cambiare il proprio tipo: esse mostrano, cioè, inizialmente linee dell'idrogeno, ma dopo qualche settimana o mese il loro spettro è dominato dall'elio. Il termine Tipo IIb viene utilizzato per designare queste supernove dato che esse combinano caratteristiche proprie delle supernove di Tipo II e di quelle di Tipo Ib. Alcune supernove, non riconducibili a nessuna delle classi precedenti, vengono designate con la sigla pec, abbreviazione di peculiar, che significa "strano", "insolito". La nomenclatura descritta sopra ha carattere solo tassonomico e descrive solo proprietà della luce emessa dalle supernove, non le loro cause. Ad esempio, le supernove di tipo I hanno progenitori differenti: quelle di tipo Ia sono prodotte dall'accrescimento di materiale su una nana bianca, mentre quelle di tipo Ib/c sono prodotte dal collasso del nucleo di massicce stelle di Wolf-Rayet. I paragrafi seguenti descrivono i modelli scientifici delle più plausibili cause di una supernova. Una nana bianca può ricevere materiale da una compagna mediante accrescimento o mediante fusione delle due componenti. La quantità di materiale ricevuto può essere tale da innalzare la temperatura del suo nucleo fino al punto di fusione del carbonio. A questo punto si innesca un runaway termico che disgrega completamente la nana bianca. Nella maggior parte dei casi il processo avviene mediante il lento accrescimento della nana bianca da parte di materiale costituito per lo più da idrogeno e in minima parte da elio. Siccome il punto di fusione è raggiunto da stelle aventi una massa quasi identica e una composizione chimica molto simile, le supernove di tipo Ia hanno proprietà molto simili e vengono utilizzate come candele standard per misurare distanze intergalattiche. È tuttavia spesso richiesto un qualche tipo di correzione che tenga conto delle anomalie nello spettro dovute al grande spostamento verso il rosso delle supernove più distanti o delle piccole variazioni di luminosità identificabili dalla forma della curva di luce o dallo spettro. Ci sono diversi modi in cui una supernova di questo tipo può formarsi, ma essi condividono il medesimo meccanismo di base. Se una nana bianca al carbonio-ossigeno accresce sufficiente materiale da raggiungere il limite di Chandrasekhar di 1,44 M☉, così da non essere più in grado mantenere il suo equilibrio termodinamico mediante la pressione degli elettroni degenerati, essa comincerà a collassare. Tuttavia le teorie attuali sostengono che in realtà il limite non viene mai raggiunto nei casi standard: il nucleo, infatti, giunge a condizioni di temperatura e densità sufficienti a innescare la detonazione del carbonio quando viene raggiunto il 99% del limite di Chandrasekhar e pertanto prima che il collasso abbia inizio. In pochi secondi, una frazione sostanziale della materia che costituisce la nana bianca viene fusa, liberando abbastanza energia (1-2 × 1044 joule da disgregare la stella in una supernova. Viene prodotta un'onda d'urto che si propaga a velocità dell'ordine di 5.000-20.000 km/s, circa il 3% della velocità della luce. Inoltre la luminosità della stella aumenta enormemente, raggiungendo la magnitudine assoluta −19,3 (5 miliardi di volte la luminosità del Sole), con piccole variazioni da una supernova all'altra. Ciò permette di utilizzare queste supernove come candele standard secondarie per misurare le distanze intergalattiche. Il modello per la formazione di questa categoria di supernove prevede un sistema binario stretto in cui la più la massiccia delle due componenti si sia evoluta fuoriuscendo dalla sequenza principale e diventando una gigante[58]. Ciò comporta che le due stelle condividano lo stesso inviluppo di gas, con un conseguente decadimento dell'orbita. La stella gigante perde a questo punto la maggior parte dei suoi strati superficiali, il che lascia scoperto il suo nucleo, composto principalmente di carbonio e ossigeno. La stella si è così trasformata in una nana bianca. L'altra stella in un secondo momento evolve anch'essa diventando a sua volta una stella gigante. Data la vicinanza fra le due componenti, parte del gas della gigante viene trasferito alla nana bianca, incrementando la sua massa. Sebbene questo modello generale sia ampiamente accettato, i dettagli esatti circa l'innesco del carbonio e circa gli elementi pesanti prodotti nell'esplosione non sono ancora chiari. Le supernove di Tipo Ia seguono una caratteristica curva di luce - il grafico che mostra la luminosità in funzione del tempo - dopo l'esplosione. La luminosità viene prodotta dal decadimento radioattivo del nichel-56 in cobalto-56 e di questo in ferro-56. Un altro modello per la formazione delle supernove di Tipo Ia è costituito dalla fusione di due nane bianche, la cui massa combinata supera il limite di Chandrasekhar. Le esplosioni prodotte da questo meccanismo di formazione sono molto differenti fra loro e in alcuni casi esso non conduce nemmeno alla formazione di una supernova, ma si assume che, quando una supernova viene prodotta, essa sia meno luminosa ma abbia una curva di luce più allungata rispetto alle supernove di Tipo Ia causate dal meccanismo standard. Supernove di Tipo Ia eccezionalmente luminose possono verificarsi quando la nana bianca ha una massa superiore al limite di Chandrasekhar. Quando ciò si verifica l'esplosione è asimmetrica[64] ma il materiale espulso ha una energia cinetica minore. Non esiste alcuna classificazione formale per le supernove di Tipo Ia non standard. Una supernova di tipo Ia è una tipologia di supernova originata dall'esplosione di una nana bianca. Una nana bianca è ciò che resta di una stella di massa medio-piccola che ha completato il suo ciclo vitale e al cui interno la fusione nucleare è cessata; tuttavia, le nane bianche al carbonio-ossigeno, le più comuni dell'Universo, sono in grado, se le loro temperature salgono a sufficienza, di far perdurare le reazioni di fusione, che rilasciano una gran quantità di energia. Da un punto di vista fisico, le nane bianche a lenta rotazione possiedono una massa limite, definita limite di Chandrasekhar, che equivale a circa 1,44 masse solari (M☉). In un secondo momento anche la componente secondaria inizia ad affrontare la fase post-sequenza principale, espandendosi in gigante rossa e inglobando la nana bianca. In questa fase, le due stelle condividono nuovamente un comune involucro gassoso e continuano ad avvicinarsi man mano che perdono momento angolare; il risultato sarà un'orbita così stretta che essa potrà essere completata in poche ore. Durante questa fase si attivano dei meccanismi di trasferimento di massa dalla gigante verso la nana bianca; se questo meccanismo dura per un tempo sufficiente, la nana bianca può avvicinarsi alla massa limite di Chandrasekhar, pari a circa 1,44 M☉. La durata del trasferimento di materia dalla secondaria alla nana bianca può durare per alcuni milioni di anni (durante i quali può andare incontro a ripetute esplosioni di nova) prima che si raggiungano le condizioni idonee all'esplosione in supernova di tipo Ia. Questa è la massa più elevata che può essere supportata dalla pressione esercitata dagli elettroni degenerati; oltre questo limite le nane bianche tendono a collassare. Se una nana bianca aumenta gradualmente la propria massa accrescendola da una compagna in un sistema binario, si ritiene che, nel momento in cui si approssima al limite, il suo nucleo possa raggiungere la temperatura richiesta per la fusione del carbonio. Se la nana bianca si fonde poi con un'altra stella (un evento in realtà molto raro), essa potrebbe persino superare il limite e iniziare a collassare, riaumentando la temperatura fino al punto di fusione. In un secondo momento anche la componente secondaria inizia ad affrontare la fase post-sequenza principale, espandendosi in gigante rossa e inglobando la nana bianca. In questa fase, le due stelle condividono nuovamente un comune involucro gassoso e continuano ad avvicinarsi man mano che perdono momento angolare; il risultato sarà un'orbita così stretta che essa potrà essere completata in poche ore. Durante questa fase si attivano dei meccanismi di trasferimento di massa dalla gigante verso la nana bianca; se questo meccanismo dura per un tempo sufficiente, la nana bianca può avvicinarsi alla massa limite di Chandrasekhar, pari a circa 1,44 M☉. La durata del trasferimento di materia dalla secondaria alla nana bianca può durare per alcuni milioni di anni (durante i quali può andare incontro a ripetute esplosioni di nova) prima che si raggiungano le condizioni idonee all'esplosione in supernova di tipo Ia. In un secondo momento anche la componente secondaria inizia ad affrontare la fase post-sequenza principale, espandendosi in gigante rossa e inglobando la nana bianca. In questa fase, le due stelle condividono nuovamente un comune involucro gassoso e continuano ad avvicinarsi man mano che perdono momento angolare; il risultato sarà un'orbita così stretta che essa potrà essere completata in poche ore. Durante questa fase si attivano dei meccanismi di trasferimento di massa dalla gigante verso la nana bianca; se questo meccanismo dura per un tempo sufficiente, la nana bianca può avvicinarsi alla massa limite di Chandrasekhar, pari a circa 1,44 M☉. La durata del trasferimento di materia dalla secondaria alla nana bianca può durare per alcuni milioni di anni (durante i quali può andare incontro a ripetute esplosioni di nova) prima che si raggiungano le condizioni idonee all'esplosione in supernova di tipo Ia. Entro pochi secondi dall'inizio della fusione, una sostanziale frazione della materia della nana bianca subisce una reazione termonucleare incontrollata che rilascia un'energia sufficiente (1-2 × 1044 J) a disgregare la stella in una violenta esplosione. Questa categoria di supernovae produce un picco notevole di luminosità assoluta, che si presenta pressoché simile in tutte le esplosioni di questo tipo a causa della relativa uniformità delle masse delle nane bianche che esplodono in seguito ai processi di accrescimento. Per tale ragione le supernovae di tipo Ia sono utilizzate come candele standard per misurare la distanza della loro galassia ospitante, poiché la loro magnitudine apparente dipende quasi esclusivamente dalla distanza a cui si trovano. Diversi modelli sono stati proposti per spiegare la formazione di una supernova di tipo Ia. Uno di questi è costituito dall'evoluzione di un sistema binario stretto. Il sistema è inizialmente costituito da due stelle di sequenza principale, con la componente primaria lievemente più massiccia della secondaria; possedendo una massa superiore, la primaria subisce un'evoluzione più rapida, giungendo per prima alla fase di gigante del ramo asintotico, stadio in cui il volume della stella si espande enormemente rispetto a quello posseduto quando essa si trovava all'interno della sequenza principale. Se le due stelle sono sufficientemente vicine da condividere un comune involucro di gas esterno, la primaria può perdere una significativa frazione della sua massa, cedendo inoltre una certa quantità di momento angolare, che causa un decadimento della sua orbita che si riflette in una riduzione del semiasse maggiore e del periodo di rivoluzione, determinando un avvicinamento delle due stelle. La componente primaria infine espelle i suoi strati più esterni in una nebulosa planetaria, mentre il nucleo collassa in una tenue nana bianca. In un secondo momento anche la componente secondaria inizia ad affrontare la fase post-sequenza principale, espandendosi in gigante rossa e inglobando la nana bianca. In questa fase, le due stelle condividono nuovamente un comune involucro gassoso e continuano ad avvicinarsi man mano che perdono momento angolare; il risultato sarà un'orbita così stretta che essa potrà essere completata in poche ore. Durante questa fase si attivano dei meccanismi di trasferimento di massa dalla gigante verso la nana bianca; se questo meccanismo dura per un tempo sufficiente, la nana bianca può avvicinarsi alla massa limite di Chandrasekhar, pari a circa 1,44 M☉. La durata del trasferimento di materia dalla secondaria alla nana bianca può durare per alcuni milioni di anni (durante i quali può andare incontro a ripetute esplosioni di nova) prima che si raggiungano le condizioni idonee all'esplosione in supernova di tipo Ia. Le stelle aventi una massa iniziale almeno nove volte quella del Sole evolvono in modo complesso, fondendo progressivamente elementi sempre più pesanti a temperature sempre più elevate nei loro nuclei. La stella sviluppa una serie di gusci sovrapposti diventando simile a una cipolla, dove gli elementi più pesanti si accumulano negli strati più interni[67][68]. Il nucleo interno di queste stelle può collassare quando i processi di fusione nucleare diventano insufficienti a compensare la forza di gravità: questa è la causa di tutti i tipi di supernova eccetto quello Ia. Il collasso può causare la violenta espulsione degli strati superficiali della stella e quindi innescare una supernova oppure il rilascio di energia potenziale gravitazionale può essere insufficiente e la stella può diventare una stella di neutroni o un buco nero con modesto irraggiamento di energia. Il collasso del nucleo può avvenire attraverso meccanismi differenti: superamento del limite di Chandrasekhar, cattura elettronica, instabilità di coppia o fotodisintegrazione. Quando una stella massiccia arriva a sintetizzare un nucleo di ferro con massa superiore al limite di Chandrasekhar, la pressione degli elettroni degeneri non è più in grado di contrastare la forza di gravità e il nucleo collassa in una stella di neutroni o in un buco nero. La cattura di un elettrone da parte del magnesio in un nucleo degenere composto da ossigeno, neon e magnesio causa un collasso gravitazionale con conseguente fusione dell'ossigeno e risultati finali simili. La produzione di coppia di un elettrone e un positrone in seguito alle collisioni tra i nuclei atomici e i raggi gamma determina una riduzione della pressione termica all'interno del nucleo con conseguente caduta di pressione e parziale collasso seguito dall'innesco di un imponente runaway termonucleare che smembra completamente la stella. Un nucleo stellare sufficientemente massiccio e caldo può generare raggi gamma talmente energetici da innescare processi di fotodisintegrazione, cioè la scomposizione di nuclei atomici pesanti in nuclei più leggeri, con conseguente collasso della stella. Le modalità con cui il nucleo collassa, il tipo di supernova prodotto e la natura del resto di supernova dipendono essenzialmente da due fattori: la massa iniziale della stella e la sua metallicità. Quest'ultima determina infatti la perdita di massa che la stella subirà durante la sua esistenza a causa del vento stellare: le stelle a bassa metallicità subiscono minori perdite di massa e quindi hanno nuclei di elio e inviluppi di idrogeno più massicci al termine della loro esistenza. Si ritiene che le stelle aventi una massa iniziale inferiore a ~9 M☉ non abbiano massa sufficiente perché il loro nucleo collassi al termine della loro esistenza e quindi sono destinate a diventare delle nane bianche. Le stelle aventi una massa iniziale di ~9-10 M☉ sviluppano un nucleo degenere di ossigeno e neon, che può o collassare in una stella di neutroni per cattura elettronica o diventare una nana bianca all'ossigeno-neon-magnesio. Sopra le 10 M☉ iniziali il collasso del nucleo è invece l'unica alternativa. Gli esiti possibili di questo collasso sono tre: o una stella di neutroni o una stella di neutroni seguita da un buco nero o, direttamente, un buco nero. Quale di queste possibilità si realizza è determinato dalla massa della stella al termine della sua esistenza: quanto più massiccia era inizialmente la stella e quanto meno massa ha perduto nel corso della sua evoluzione, tanto più massiccia essa sarà al termine della sua esistenza. Le stelle aventi una grande massa al momento del collasso formeranno direttamente un buco nero, mentre quelle aventi minore massa lo formeranno solo dopo essere passate per lo stadio di stelle di neutroni, fino a giungere alle stelle che non producono affatto un buco nero, ma solo una stella di neutroni. Per quanto riguarda le stelle a bassissima metallicità, quelle aventi una massa alla ZAMS compresa fra 10 e 140 M☉ collassano perché sviluppano al termine della loro esistenza un nucleo di ferro la cui massa supera il limite di Chandrasekharl. Tuttavia il collasso ha esiti differenti a seconda della massa iniziale della stella. Le stelle con massa compresa fra 10 e 25 M☉ terminano la loro esistenza come stelle di neutroni, quelle aventi una massa compresa fra 25 e 40 M☉ danno vita a buchi neri solo dopo essere diventate stelle di neutroni, mentre quelle con massa compresa fra 40 e 140 M☉ collassano direttamente in buchi neri. Le stelle a bassissima metallicità con massa alla ZAMS superiore a 140 M☉ sviluppano invece nuclei di elio estremamente massicci (~65 M☉), all'interno dei quali la radiazione gamma è talmente intensa da dare vita a instabilità di coppia e da causare l'esplosione della stella senza lasciare alcun residuo. Per le stelle con massa ancora superiore (≥260 M☉), il meccanismo che interviene negli ultimi stadi della esistenza della stella è quello della fotodisintegrazione, che produce direttamente buchi neri molto massicci (≥100 M☉). Quanto più la metallicità iniziale è elevata, tanto più la stella perde massa nel corso della sua esistenza. Una stella molto massiccia alla ZAMS (≥260 M☉), per esempio, se presenta un certo livello di metallicità, perderà massa sufficiente da non produrre più meccanismi di fotodisintegrazione, ma terminerà la sua esistenza come una supernova a instabilità di coppia. A metallicità più elevate essa non svilupperà un nucleo sufficientemente massiccio da produrre instabilità di coppia, ma collasserà in un buco nero. A metallicità di poco inferiori a quella del Sole, essa produrrà un buco nero solo dopo essere passata per lo stadio di stella di neutroni. Infine a metallicità superiori a quella del Sole perderà un quantitativo di massa sufficiente da non produrre più un buco nero, ma da collassare in un stella di neutroni. Le supernovae di tipo Ib e Ic sono una classe di supernovae che si producono in seguito al collasso del nucleo di stelle molto massicce che hanno perso gran parte o tutto il proprio involucro esterno di idrogeno. Rispetto a quelle di tipo Ia, lo spettro luminoso di queste due categorie di supernovae è privo della linea di assorbimento del silicio. Le supernovae di tipo Ic si differenziano da quelle di tipo Ib per aver perso una parte maggiore del loro involucro, incluso parte dello strato di elio immediatamente sottostante allo strato di idrogeno. Una stella massiccia evoluta, prima di diventare una supernova, ha una struttura simile a quella di una cipolla, con molteplici involucri in cui avvengono le reazioni nucleari. L'involucro più esterno consiste di idrogeno, mentre se si procede verso il centro della stella seguono gli involucri di elio, carbonio, neon, ossigeno, silicio e ferro. Se il vento emanato dalla stella produce una perdita di massa significativa, lo strato superficiale di idrogeno può essere soffiato via dall'astro, esponendo l'involucro più interno costituito principalmente da elio commisto ad altri elementi. Le stelle molto massicce, aventi masse 25 volte quella del Sole o più, possono arrivare a perdere 10−5 masse solari all'anno, cioè l'equivalente della massa del Sole ogni 100.000 anni. Si suppone che le supernovae di tipo Ib e Ic siano prodotte dal collasso di stelle massicce che hanno perduto i loro strati esterni di idrogeno e elio o a causa dell'intenso vento stellare o a causa di un imponente trasferimento di massa a una compagna con cui interagiscono gravitazionalmente. Le stelle di Wolf-Rayet sono un esempio di stelle che hanno subito importanti perdite di massa di questo tipo: esse manifestano infatti spettri in cui le linee dell'idrogeno non compaiono. Le supernovae di tipo Ib si originano da stelle che hanno espulso la maggior parte del proprio idrogeno, mentre quelle di tipo Ic da stelle che hanno perso sia i gusci dell'idrogeno che gran parte di quello d'elio. A parte questo aspetto, tuttavia, i meccanismi che producono le supernovae di tipo Ib e Ic sono simili a quelli che producono quelle di tipo II, motivo per il quale entrambe le classi sono note anche come supernovae a collasso nucleare; in particolare, le supernovae di classe Ib/Ic sono note come supernovae a collasso nucleare nudo. Le caratteristiche spettrali inoltre permettono di considerare i tipi tipi Ib e Ic anche come una via di mezzo fra le supernovae di tipo Ia e quelle di tipo II. Vi sono evidenze che portano a pensare che solo una piccola percentuale di supernovae di tipo Ic causino gamma ray burst (GRB), anche se potenzialmente tutte le stelle che hanno perso lo strato superficiale dell'idrogeno possono originare GRB. Probabilmente la comparsa o meno di un GRB dipende dalla geometria dell'esplosione. Dal momento che le loro stelle progenitrici sono piuttosto rare, si ritiene che la frequenza con cui si verifichi l'esplosione di una supernova di tipo Ib o Ic sia nettamente inferiore a quella delle supernovae di tipo II; si verificano comunque con una certa frequenza nelle regioni di attiva formazione stellare (spesso associate a fenomeni di starburst), mentre non ne sono ancora state rintracciate all'interno di galassie ellittiche. Come le supernovae di tipo Ia, le supernovae di tipo Ib e Ic non mostrano nei loro spettri le linee dell'idrogeno; tuttavia si differenziano dalle supernovae di tipo Ia per la mancanza della linea di assorbimento del silicio monoionico alla lunghezza d'onda di 635,5 nm. Man mano che invecchiano, mostrano inoltre le linee di alcuni elementi come ossigeno, calcio e magnesio, mentre nelle supernovae di tipo Ia dominano le linee del ferro. Le supernovae di tipo Ib si differenziano inoltre dalle Ic per la mancanza in queste ultime delle linee dell'elio a 587,6 nm. Le curve di luce delle supernovae di tipo Ib sono generalmente abbastanza simili a quelle delle supernovae di tipo Ia, anche se possono differire in una certa misura. Spesso però il loro picco di luminosità risulta più basso e più spostato verso il rosso. Osservata nella porzione dell'infrarosso, la curva di luce appare molto simile a quella delle supernovae di tipo II-L. Rispetto alle supernovae di tipo Ic, le SN di tipo Ib solitamente presentano un declino della luminosità più lento. Le curve di luce delle supernovae di tipo Ia sono impiegate come candele standard per la misurazione delle distanze cosmologiche. Pertanto, per via della loro somiglianza con le curve luminose delle SN di tipo Ia, le supernovae di tipo Ib e Ic costituiscono una fonte di contaminazione e quindi, una volta riconosciute, andrebbero rimosse dai saggi osservativi prima di addentrarsi nella stima delle distanze cosmiche. Una supernova di tipo II (o supernova a collasso nucleare, dall'inglese core-collapse supernova) è un tipo di supernova che si forma a partire dal collasso interno e dalla conseguente violenta esplosione di una stella di massa superiore ad almeno 9 volte la massa del Sole (stella massiccia). Le stelle massicce, come d'altronde tutte le stelle, generano energia tramite la fusione nucleare, nei loro nuclei, dell'idrogeno in elio. Tuttavia, a differenza del Sole, queste stelle, giunte ad una fase avanzata del proprio ciclo vitale, non si limitano a fondere l'elio in carbonio, ma, in virtù della loro massa sufficientemente elevata, sono in grado di attuare dei cicli di fusione che, dal carbonio, portano alla produzione di elementi sempre più pesanti. Il prodotto finale di questi cicli di nucleosintesi è il ferro-56, un isotopo del ferro di peso atomico 56 uma che, a causa dell'eccessivo dispendio energetico necessario per fonderlo, si accumula inerte al centro dell'astro. Quando il nucleo ferroso raggiunge e supera una massa limite, detta limite di Chandrasekhar ed equivalente a 1,44 masse solari, va incontro ad un'implosione; il nucleo collassante si scalda, causando una serie di rapide reazioni nucleari che risultano nella formazione di neutroni e neutrini. Il collasso viene arrestato da varie interazioni su piccola scala tra i neutroni neoformati, che fanno sì che l'implosione "rimbalzi": si crea così un'onda d'urto che causa la violenta espulsione nello spazio circostante degli strati esterni della stella. Sarebbe questa, secondo i modelli, la sequenza di eventi che conduce all'esplosione di una supernova di tipo II. Le supernovae di tipo II sono classificate in due sottotipi principali a seconda della curva di luce cui danno luogo: le supernovae di tipo II-L, che danno luogo ad una curva che mostra una costante (Lineare) diminuzione di luminosità con l'avanzare del tempo, e le supernovae di tipo II-P, che danno luogo ad una curva che mostra un appiattimento (Plateau, che indica un periodo in cui la luminosità si mantiene costante) seguito poi da una diminuzione di luminosità simile a quella del tipo L. Normalmente le supernovae di tipo II manifestano nei loro spettri la presenza di idrogeno. Le supernovae di tipo II si differenziano dalle supernovae di tipo Ib e Ic, anch'esse a collasso nucleare, per il fatto che queste ultime derivano da stelle massicce prive del loro strato esterno di idrogeno (per il tipo Ib) ed elio (per il tipo Ic); di conseguenza, i loro spettri appaiono privi di questi elementi. Le stelle massicce intraprendono dei tragitti evolutivi piuttosto complessi. Mentre la fase di sequenza principale, durante la quale l'astro fonde l'idrogeno in elio, è comune a tutte le stelle, sia quelle di massa piccola e medio-piccola, sia quelle massicce, le fasi successive a questa lunga fase di stabilità, così come i tipi di reazioni nucleari e gli elementi in esse coinvolti, si differenziano a seconda della massa dell'astro. Infatti, mentre le stelle di massa piccola e media, nelle fasi seguenti la sequenza principale, fondono l'idrogeno in un guscio più esterno al nucleo di elio e, solamente qualora la massa sia sufficiente, possono arrivare a fondere l'elio in carbonio ed ossigeno, le stelle massicce, conclusa la fusione dell'elio in carbonio, raggiungono, nei loro nuclei, le condizioni di temperatura e pressione necessarie a far avvenire la fusione di quest'ultimo in elementi più pesanti: ossigeno, neon, silicio e zolfo. In tali stelle può svolgersi in contemporanea la nucleosintesi di più elementi all'interno di un nucleo che appare stratificato; tale struttura è paragonata da molti astrofisici agli strati concentrici di una cipolla. In ciascun guscio avviene la fusione di un differente elemento: il più esterno fonde idrogeno in elio, quello immediatamente sotto fonde elio in carbonio e via dicendo, a temperature e pressioni sempre crescenti man mano che si procede verso il centro. Il collasso di ciascuno strato è sostanzialmente evitato dal calore e dalla pressione di radiazione dello strato sottostante, dove le reazioni procedono a un regime più intenso. I prodotti finali della nucleosintesi sono il nichel-56 (56Ni) e il cobalto-56 (56Co), risultato della fusione del silicio, che viene completata nel giro di pochi giorni. Questi due elementi decadono rapidamente in ferro-56 (56Fe). Il fattore limitante del processo di fusione nucleare è la quantità di energia che viene rilasciata mentre esso è in atto, che dipende dall'energia di legame che mantiene coesi i nuclei atomici. Ogni tappa successiva del processo produce dei nuclei sempre più pesanti, la cui fusione rilascia progressivamente un'energia sempre più bassa. Poiché i nuclei del ferro e del nichel possiedono un'energia di legame nettamente superiore a quella di qualunque altro elemento,[9] la loro fusione, anziché essere un processo esotermico (che produce ed emette energia), è fortemente endotermica (cioè richiede e consuma energia). La tabella sottostante riporta il tempo che una stella di massa 25 volte quella solare impiega per fondere il proprio combustibile nucleare. Si tratta di una stella di classe O, con un raggio 10 volte quello del Sole ed una luminosità 80 000 volte quella della nostra stella. Il ferro-56, non impiegabile per la fusione nucleare, si accumula inerte al centro dell'astro. Pur essendo sottoposto ad altissime sollecitazioni gravitazionali, il nucleo non collassa per via della pressione degli elettroni degeneri, uno stato in cui la materia è talmente densa che una sua ulteriore compattazione richiederebbe che gli elettroni occupino tutti il medesimo livello energetico. Tuttavia, per il principio di esclusione di Pauli, un medesimo livello energetico può essere occupato solamente da una coppia di identici fermioni con spin opposto; di conseguenza, gli elettroni tendono a respingersi, contrastando in questo modo il collasso gravitazionale. Quando la massa del nucleo ferroso raggiunge e supera il limite di Chandrasekhar, la pressione degli elettroni degeneri non è più in grado di contrastare efficacemente la gravità e il nucleo va incontro ad un catastrofico collasso;[11] la parte più esterna del nucleo, durante la fase di collasso, raggiunge velocità dell'ordine dei 70 000 km/s, pari al 23% della velocità della luce. Il nucleo in rapida contrazione si riscalda, producendo fotoni gamma ad alta energia che decompongono i nuclei di ferro in nuclei di elio e neutroni liberi tramite un processo noto come fotodisintegrazione. Man mano che la densità del nucleo aumenta, incrementa anche la probabilità che gli elettroni e i protoni si fondano (tramite un fenomeno noto come cattura elettronica), producendo altri neutroni e neutrini elettronici. Poiché questi ultimi raramente interagiscono con la normale materia, essi fuggono via dal nucleo, portando con sé energia ed accelerando il collasso, che va avanti in una scala temporale di alcuni millisecondi. Non appena il nucleo ha raggiunto un livello di contrazione tale da subire un distacco dagli strati ad esso immediatamente esterni, questi ultimi assorbono una parte dei neutrini prodotti, dando inizio all'esplosione della supernova. Il collasso del nucleo viene arrestato da una serie di interazioni repulsive su piccola scala, come l'interazione forte, che intervengono tra i neutroni; a questo punto, la materia, in caduta verso il centro della stella, "rimbalza", producendo un'onda d'urto che si propaga verso l'esterno. L'energia trasportata dall'onda degrada gli elementi pesanti presenti nel nucleo, ma così facendo perde energia, arrivando ad arrestarsi in prossimità della parte esterna del nucleo. Il nucleo di neutroni neoformato ha una temperatura iniziale di circa 100 miliardi di kelvin, 105 volte la temperatura del nucleo del Sole. La maggior parte di questa grande energia termica deve essere dispersa perché possa formarsi una stella di neutroni stabile; il processo di dispersione dell'energia termica è accompagnato da un'ulteriore emissione di neutrini. Questi neutrini, caratterizzati da differenti sapori e accoppiati dalle rispettive antiparticelle, gli antineutrini, si formano in numero molto maggiore rispetto ai neutrini formatisi per cattura elettronica. I due meccanismi di produzione dei neutrini permettono di disperdere l'energia potenziale gravitazionale del collasso rilasciando un flusso di neutrini con un'energia di circa 1046 joule (100 foe) in un lasso di tempo di una decina di secondi. Tramite un processo non ancora pienamente compreso, circa 1044 joule (1 foe) vengono riassorbiti dal fronte d'onda in stallo, provocando un'esplosione. I neutrini prodotti da una supernova sono stati rintracciati per la prima volta quando esplose la Supernova 1987 A, il che portò gli astronomi a concludere sulla validità di fondo del modello del collasso gravitazionale del nucleo. L'esplosione di una supernova lascia come residui, oltre ad un resto nebuloso, un residuo di materia degenere: la stella compatta. A seconda della massa originaria della stella (non tenendo eventualmente in conto l'intensità dell'esplosione e la quantità di materia da essa espulsa nello spazio) si possono formare due differenti residui: se la stella progenitrice ha una massa inferiore a 20 masse solari si viene a formare una stella di neutroni; se invece la massa è superiore a questo tetto massimo, il collasso gravitazionale porta il nucleo a raggiungere le dimensioni del raggio di Schwarzschild, andando a formare un buco nero. Il limite di massa teorico per questo tipo di collasso nucleare è fissato in circa 40-50 masse solari; al di sopra di questo tetto si ritiene che una stella collassi direttamente in buco nero senza dar luogo all'esplosione di una supernova, sebbene delle incertezze nei modelli del collasso nucleare di una supernova rendono il calcolo di questi limiti ancora piuttosto incerto. Il modello standard, in fisica delle particelle, è una teoria che descrive tre delle quattro interazioni fondamentali tra le particelle elementari che costituiscono la materia; la teoria consente la formulazione di ipotesi che permettono di predeterminare le modalità di interazione delle particelle in diverse condizioni. L'energia posseduta da ogni singola particella in una supernova è normalmente compresa tra 1 e 100 pJ (picojoule, 10−12 J, equivalenti a circa dieci-cento MeV). L'energia delle particelle coinvolte nell'esplosione di una supernova è abbastanza piccola da suggerire la correttezza di fondo dei modelli formulati a partire dal modello standard; tuttavia, le altissime densità di questo processo potrebbero spingere i fisici ad apportarvi alcune correzioni. In particolare, gli acceleratori di particelle situati sulla Terra sono in grado di produrre delle interazioni tra le particelle con energie di gran lunga maggiori (dell'ordine del TeV) rispetto a quelle riscontrate tra le particelle nelle supernovae, ma bisogna tener presente che questi esperimenti riguardano singole particelle che interagiscono con altre singole particelle; è dunque probabile che le alte densità nelle supernovae possano produrre degli effetti insoliti. Le interazioni tra i neutrini e le altre particelle nella supernova hanno luogo grazie alla forza nucleare debole, la cui origine sembra ben compresa; tuttavia, le interazioni tra protoni e neutroni coinvolgono la forza nucleare forte, le cui cause non sono state ancora ben comprese. La principale questione ancora non risolta riguarda il modo in cui il flusso di neutrini trasferisce la propria energia al resto della stella producendo le onde d'urto che ne causano l'esplosione. Si sa che solamente l'1% dell'energia di queste particelle debba essere trasferita per provocare l'esplosione, ma spiegare come quest'1% venga trasferito ha causato non poche difficoltà agli astrofisici, nonostante si ritenga che le interazioni tra le particelle in gioco siano ben conosciute. Negli anni novanta, un modello prese in considerazione il convective overturn, che ipotizza che la convezione, sia dei neutrini dall'interno, sia dal materiale in caduta dall'esterno, completino il processo di distruzione della stella, lasciando ai neutrini la possibilità di fuggire dall'astro. Durante questa fase, vengono sintetizzati elementi più pesanti del ferro tramite cattura neutronica, grazie alla pressione dei neutrini ai limiti della cosiddetta "neutrinosfera", la quale infine diffonde nello spazio circostante una nebulosa di gas e polveri più ricca in elementi pesanti rispetto alla stella originaria. La fisica del neutrino, modellata sul modello standard, riveste un ruolo cruciale nella comprensione di questo processo; un altro ambito di studi molto importante è l'idrodinamica del plasma che costituisce la stella morente: comprendere il suo comportamento durante il collasso del nucleo consente di determinare quando e come si forma l'onda d'urto e quando e come entra in stallo e si rinvigorisce, dando quindi luogo all'esplosione dell'astro.[24] Le simulazioni computerizzate sono riuscite con successo a calcolare il comportamento delle supernovae di tipo II quando si forma l'onda d'urto. Ignorando il primo secondo dell'esplosione, ed assumendo che essa sia effettivamente iniziata, gli astrofisici sono stati in grado di formulare delle dettagliate teorie in merito alle modalità di sintesi degli elementi pesanti e all'aspetto che sarebbe stato assunto dalla curva di luce dell'esplosione. L'analisi dello spettro di una supernova di tipo II mostra normalmente la serie di Balmer dell'idrogeno ionizzato; ed è proprio la presenza di queste linee la discriminante tra una supernova di questa categoria ed una supernova di tipo Ia. Mettendo in relazione la luminosità di una supernova di tipo II con un periodo di tempo, la curva di luce che ne risulta mostra un caratteristico picco seguito da un declino con un tasso medio di 0,008 magnitudini al giorno: un tasso minore rispetto a quello delle supernovae di tipo Ia. Le supernovae di tipo II sono suddivise in due classi, a seconda dell'aspetto assunto dalla curva di luce: le supernovae di tipo II-L e le supernovae di tipo II-P. La curva di luce di una supernova di tipo II-L mostra un declino costante (Lineare) della luminosità dopo il picco; la curva di una supernova di tipo II-P mostra invece un caratteristico appiattimento (in gergo Plateau) durante la fase di declino, il che rappresenta un periodo in cui la luminosità resta costante o diminuisce in maniera estremamente più lenta: infatti, raffrontando i tassi di declino si può notare come quello di una supernova II-P sia notevolmente inferiore (circa 0,0075 magnitudini/giorno) rispetto a quello del tipo II-L (0,012 magnitudini/giorno). La differenza nel tracciato grafico tra i due tipi di supernova sarebbe dovuta al fatto che, nel caso delle supernovae II-L, si ha l'espulsione della maggior parte dello strato di idrogeno della stella progenitrice, mentre il plateau del tipo II-P sarebbe dovuto ad un cambiamento nell'opacità alla radiazione dello strato esterno: le onde d'urto ionizzano l'idrogeno dello strato esterno, provocando un considerevole aumento dell'opacità che evita l'immediata fuga dei fotoni dalla parte più interna dell'esplosione. Solamente quando la fascia di idrogeno si raffredda abbastanza da consentire la ricombinazione degli atomi neutri lo strato diventa trasparente lasciando passare i fotoni. Esistono delle supernovae di tipo II caratterizzate da spettri insoliti; tra queste si annoverano le supernovae di tipo IIn e IIb. Le supernovae di tipo IIn presentano spettri con linee di emissione dell'idrogeno di spessore medio o sottile ("n" sta per narrow, che in inglese significa stretto). È possibile che le stelle progenitrici di questa classe di SN siano delle variabili blu luminose circondate da un cospicuo inviluppo di gas, risultato dell'imponente perdita di massa per mezzo del vento stellare cui queste stelle sono andate incontro; i modelli matematici indicano, nel caso degli spettri con linee dell'H a spessore medio, che il materiale espulso con la deflagrazione instauri forti interazioni con i gas dell'inviluppo che circonda la stella esplosa. Alcuni esempi di supernovae di tipo IIn sono SN 2005gl e SN 2006gy. Le supernovae di tipo IIb presentano invece delle caratteristiche intermedie con quelle delle supernovae di tipo Ib: mostrano deboli linee dell'idrogeno nella porzione iniziale dello spettro, motivo per il quale sono classificate come SN di tipo II, ma la loro curva di luce presenta, dopo il picco iniziale, un secondo picco, che le assimila alle supernovae di tipo Ib. Si ritiene che le stelle progenitrici potrebbero essere delle supergiganti che hanno perso gran parte del proprio strato esterno di idrogeno a seguito di interazioni mareali con un'altra stella in un sistema binario, lasciando quasi scoperto il nucleo.[34] Man mano che il materiale espulso dalla supernova IIb si espande, lo strato di idrogeno residuo diviene rapidamente più trasparente rivelando gli strati più profondi.[34] L'esempio più tipico di SN di tipo IIb è SN 1993J, mentre sembrerebbe che anche Cassiopeia A appartenga a questa classe. Il collasso nucleare di stelle molto massicce non può essere arrestato in nessun modo: infatti, le interazioni repulsive neutrone-neutrone sono in grado di mantenere un oggetto che non abbia una massa superiore al limite di Tolman-Oppenheimer-Volkoff di circa 3,8 masse solari.[38] Al di sopra di questo limite il nucleo collassa a formare direttamente un buco nero stellare,[18] producendo forse una (ancora teorica) esplosione di ipernova. Nel meccanismo proposto per questo fenomeno, noto come collapsar, due getti di plasma estremamente energetici (getti relativistici) vengono emessi dai poli della stella a velocità prossime a quella della luce; i getti emettono una grande quantità di radiazione ad alta energia, in particolare raggi gamma. L'emissione di getti relativistici a partire dal collasso di una stella in buco nero è una delle possibili spiegazioni per la formazione dei gamma ray burst, la cui eziologia è ancora quasi totalmente sconosciuta.[39] Benché le supernove siano conosciute in primo luogo come eventi molto luminosi, la radiazione elettromagnetica è solo un effetto secondario dell'esplosione. Soprattutto nel caso di supernove derivanti dal collasso del nucleo, la radiazione elettromagnetica emessa rappresenta solo una piccola frazione dell'energia totale dell'evento. Ci sono significative differenze nel bilancio dell'energia prodotta dai diversi tipi di supernove. Nelle supernove di Tipo Ia, la maggior parte dell'energia è convogliata nella nucleosintesi di elementi pesanti e nell'accelerazione del materiale espulso. Invece nelle supernove in cui il nucleo collassa la maggior parte dell'energia è convogliata nell'emissione di neutrini e, sebbene parte di essi forniscano energia per l'esplosione, più del 99% di essi viene espulso dalla stella nei minuti che seguono il collasso. Le supernove di Tipo Ia ricavano la propria energia dalla fusione del carbonio e dell'ossigeno presenti nella nana bianca. I dettagli non sono ancora stati modellati, ma il risultato è l'espulsione dell'intera massa della stella originaria a velocità molto elevate. Fra la massa espulsa, circa 0,5 M☉ sono costituiti da nichel-56, generato dalla fusione del silicio. Il nichel-56 è radioattivo con una emivita di sei giorni; tramite il decadimento beta più esso genera il cobalto-56, emettendo raggi gamma. Il cobalto-56 decade a sua volta nello stabile Fe-56 con una emivita di 77 giorni. Questi due processi sono responsabili delle emissioni elettromagnetiche nelle supernove di Tipo Ia e, in combinazione con la via via maggiore trasparenza del materiale espulso, sono alla base del rapido declino della curva di luce caratteristica di questo tipo di supernove. Le supernove derivanti dal collasso del nucleo sono generalmente meno luminose delle supernove di Tipo Ia, ma l'energia totale rilasciata è maggiore. Essa deriva inizialmente dall'energia potenziale gravitazionale che viene rilasciata dal materiale che collassa nel nucleo sotto forma di neutrini elettronici derivanti dalla disintegrazione dei nuclei atomici; in seguito, l'energia viene emessa sotto forma di neutrini termici di tutti i sapori derivanti dalla caldissima stella di neutroni appena formata. L'energia cinetica e quella derivante dal decadimento del nichel-56 sono inferiori a quelle rilasciate dalle supernove di Tipo Ia e ciò rende questo tipo di supernove meno luminose, sebbene l'energia derivante dalla ionizzazione dell'idrogeno rimanente, che a volte ammonta a molte masse solari, può contribuire a rallentare il declino della curva di luce e a produrne un caratteristico appiattimento. In alcune supernove causate dal collasso del nucleo, il ricadere del materiale espulso nel buco nero appena formato causa dei getti relativistici che si traducono nel trasferimento di una parte considerevole dell'energia al materiale espulso.

Nelle supernove di Tipo IIn l'esplosione avviene all'interno di una densa nube di gas, che circonda la stella, e produce onde d'urto che causano l'efficiente conversione di una grande porzione dell'energia cinetica in radiazione elettromagnetica. Sebbene l'esplosione iniziale sia quella di una normale supernova, questi eventi risultano essere molto luminosi e di lunga durata in quanto non ricavano la propria luminosità esclusivamente dal decadimento radioattivo. Benché le supernove a instabilità di coppia derivino dal collasso del nucleo e abbiano spettri e luminosità simili a quelle di Tipo IIP, la natura dell'esplosione è più simile a quella di una gigantesca supernova di Tipo Ia con fusione di carbonio, ossigeno e silicio prodotta dal runaway termico. L'energia totale rilasciata da questi eventi è paragonabile a quella degli altri tipi di supernove, ma la produzione di neutrini è stimata essere molto bassa e, di conseguenza, l'energia cinetica ed elettromagnetica rilasciata è molto alta. I nuclei di queste stelle sono molto più grandi di una nana bianca, sicché il nichel prodotto può essere di diversi ordini di grandezza maggiore di quello espulso solitamente con conseguenti luminosità eccezionali. Le curve di luce dei differenti tipi di supernove variano in forma e in ampiezza in funzione dei meccanismi che hanno portato all'esplosione, del modo in cui la radiazione visibile viene prodotta e della trasparenza del materiale espulso. Inoltre le curve di luce differiscono in maniera significativa a seconda della lunghezza d'onda presa in considerazione: per esempio, nella banda dell'ultravioletto e, in generale, delle lunghezze d'onda più corte, si nota un picco estremamente luminoso della durata di poche ore, corrispondente allo shock dell'esplosione iniziale, che è tuttavia pressoché invisibile alle altre lunghezze d'onda. Le curve di luce delle supernove di Tipo Ia sono per lo più uniformi, con un massimo molto luminoso iniziale e un susseguente rapido declino della luminosità. Come si è detto, l'energia è prodotta dal decadimento radioattivo del nickel-56 e del cobalto-56. Questi radioisotopi, espulsi nell'esplosione, eccitano il materiale che li circonda, facendolo emettere radiazione. Nella fase iniziale la curva di luce declina rapidamente a causa della riduzione della fotosfera e della radiazione emessa. Successivamente la curva di luce continua a declinare nella banda B, sebbene mostri un rallentamento del declino intorno ai 40 giorni dall'esplosione: esso è la manifestazione visibile di un massimo secondario che avviene nella banda dell'infrarosso che si produce quando alcuni elementi pesanti ionizzati si ricombinano emettendo radiazione IR e quando il materiale espulso diviene ad essa trasparente. Poi la curva di luce continua a declinare a un ritmo leggermente superiore a quello del tempo del decadimento radioattivo del cobalto, dato che il materiale espulso si diffonde su volumi più ampi e quindi la conversione dell'energia derivante dal decadimento radioattivo in luce visibile diventa più difficile. Dopo alcuni mesi, la curva di luce modifica la sua forma perché l'emissione di positroni diventa il processo dominante di produzione della radiazione da parte del rimanente cobalto-56, sebbene questa porzione della curva di luce sia stata poco studiata. Le curva delle supernove di Tipo Ib e Ic sono simili a quelle di Tipo Ia sebbene abbiano un picco di luminosità mediamente inferiore. La luce visibile è anche in questo caso prodotta dal decadimento radioattivo, che viene convertito in radiazione visibile, ma la massa del nickel-56 che risulta dall'esplosione è minore. La curva di luce varia considerevolmente fra un episodio e l'altro e occasionalmente possono presentarsi supernove di Tipo Ib/c di alcuni ordini di grandezza più luminose o meno luminose della media. Le supernova di Tipo Ic più luminose vengono chiamate anche ipernovae e tendono ad avere curve di luce più large, oltre che con picchi maggiori. La fonte dell'energia in eccesso deriva probabilmente da getti relativistici emessi dal materiale che circonda il buco nero appena formato e che possono anche produrre gamma ray burst. Le curve di luce delle supernove di Tipo II sono caratterizzate da un declino molto meno accentuato rispetto a quelle delle supernove di Tipo I. Esse declinano nell'ordine di 0,05 magnitudini al giorno, se si esclude la fase in cui il declino si arresta. La radiazione visibile viene prodotta dall'energia cinetica piuttosto che dal decadimento radioattivo, data l'esistenza di idrogeno nel materiale espulso dalla stella progenitrice. Nella fase iniziale l'idrogeno viene portato ad alte temperature e viene ionizzato. La maggior parte delle supernove di tipo II mostra un prolungato appiattimento della loro curva di luce dovuto alla ricombinazione dell'idrogeno che produce luce visibile. Successivamente, la produzione di energia è dominata dal decadimento radioattivo, sebbene il declino sia più lento rispetto a quello delle supernove di tipo I dato che l'idrogeno permette una più efficiente conversione in luce visibile della radiazione emessa. Nelle supernove di Tipo II-L l'avvallamento è assente perché la stella progenitrice ha poco idrogeno nella sua atmosfera, sufficiente per apparire nello spettro, ma insufficiente per produrre un rallentamento del declino della luminosità. Le supernove di tipo IIb sono talmente carenti di idrogeno nelle loro atmosfere che le loro curve di luce sono simili a quelle delle supernove di tipo I e l'idrogeno tende perfino a scomparire dai loro spettri dopo poche settimane. Le supernove di Tipo IIn sono caratterizzate da linee spettrali aggiuntive prodotte dal denso inviluppo di gas che circonda la stella progenitrice. Le loro curve di luce sono generalmente larghe ed estese, a volte molto luminose (nel qual caso vengono classificate come ipernovae). La luminosità è dovuta a una efficiente conversione dell'energia cinetica in radiazione elettromagnetica causata dalla interazione fra il materiale espulso e l'inviluppo di gas. Ciò accade quando l'inviluppo è sufficientemente denso e compatto, il che indica che è stato prodotto dalla stella progenitrice poco prima dell'esplosione. Gli scienziati si sono lungamente interrogati sulle ragioni per cui l'oggetto compatto che rimane come resto di una supernova di Tipo II è spesso accelerato ad alte velocità: si è osservato che le stelle di neutroni hanno spesso alte velocità e si presume che anche molti buchi neri le abbiano, sebbene sia difficile osservarli in isolamento. La spinta iniziale deve essere notevole dato che essa accelera un oggetto avente una massa superiore a quella del Sole a una velocità superiore a 500 km/s. Una simile spinta deve essere provocata da una asimmetria nell'esplosione, ma l'esatto meccanismo per cui la quantità di moto viene trasferita all'oggetto compatto non è chiaro. Due delle spiegazioni proposte sono l'esistenza di meccanismi di convezione nella stella che sta per collassare e la produzione di getti durante la formazione della stella di neutroni o del buco nero. Secondo la prima spiegazione nelle ultime fasi della sua esistenza la stella sviluppa meccanismi di convezione su larga scala negli strati superiori al nucleo. Essi possono causare una distribuzione asimmetrica delle abbondanze di elementi che si traduce in una ineguale produzione di energia durante il collasso e l'esplosione Un'altra possibile spiegazione è l'accrescimento di gas intorno alla stella di neutroni appena formata, da cui si dipartono getti ad altissima velocità e che accelerano la stella in direzione opposta. Tali getti potrebbero anche giocare un ruolo nelle prime fasi dell'esplosione stessa. Asimmetrie iniziali sono state osservate anche nelle prime fasi di supernove di Tipo Ia. Ne segue che la luminosità di questo tipo di supernove dovrebbe dipendere dall'angolo dal quale vengono osservate. Tuttavia, l'esplosione diventa simmetrica con il passaggio del tempo e le asimmetrie iniziali possono essere rilevate misurando la polarizzazione della luce emessa. Le supernove ricoprono un ruolo chiave nella sintesi di elementi chimici più pesanti dell'ossigeno. Gli elementi più leggeri del ferro-56 sono prodotti dalla fusione nucleare, mentre quelli più pesanti del ferro-56 sono prodotti tramite nucleosintesi durante l'esplosione della supernova. Anche se non tutti concordano con questa affermazione, le supernove sono probabilmente i luoghi in cui avviene il processo R, un tipo molto rapido di nucleosintesi che avviene in condizioni di alta temperatura e alta densità neutronica. Le reazioni producono nuclei atomici molto instabili e ricchi di neutroni, che decadono rapidamente per decadimento beta. Il processo R, che avviene nelle supernove di Tipo II, produce circa metà degli elementi più pesanti del ferro presenti nell'universo, compresi l'uranio e il plutonio[102]. L'altro processo che produce elementi più pesanti del ferro è il processo S, che avviene nelle giganti rosse e che arriva a sintetizzare elementi fino al piombo in tempi considerevolmente più lunghi di quelli impiegati dal processo R. In astronomia, un resto di supernova (SNR dalla dizione inglese Supernova remnant) è il materiale lasciato dalla gigantesca esplosione di una supernova. Questo può accadere in due modi: quando una stella molto massiccia termina il suo combustibile nucleare, e collassa su se stessa sotto l'azione della propria forza di gravità, oppure quando una nana bianca accumula abbastanza materiale da una stella compagna da raggiungere la massa critica e fa la stessa fine. In entrambi i casi, l'esplosione risultante espelle con molta forza la maggior parte o forse tutta la materia che componeva la stella. Nel caso dell'esplosione di una stella massiccia, il nucleo della stella può collassare così rapidamente da formare un oggetto estremamente compatto formato da materia degenere. Si tratta generalmente di una stella di neutroni o a volte di un buco nero, a cui ci si riferisce come resto di supernova compatto. In tutte le esplosioni, gli strati esterni della stella sono espulsi all'esterno ad una velocità di migliaia di chilometri al secondo, dando luogo a una nube di gas e polveri in espansione. Questa nube, che raccoglie anche il mezzo interstellare precedentemente esistente nella zona di espansione, e che è spesso attraversata da onde d'urto generate dall'esplosione stessa o dall'interazione tra la nube e il mezzo interstellare, è detta resto di supernova diffuso. Un resto di supernova nella Grande Nube di Magellano, immagine che combina riprese ai raggi-x e luce visibile. Il resto di supernova compatto, quando esiste, dovrebbe trovarsi al centro di quello diffuso, ed in alcuni casi è così (come nel caso della Nebulosa del Granchio e della Nebulosa delle Vele). Spesso però l'esplosione è asimmetrica: il grosso del gas va da una parte e l'oggetto compatto viene "sparato" nell'altra direzione con velocità che possono superare i 200 km/s. In tal caso l'oggetto compatto esce rapidamente (poche centinaia o migliaia di anni) dal resto di supernova diffuso e diventa difficile mettere in relazione i due oggetti. Un resto di supernova diffuso è un oggetto effimero: in poche migliaia di anni si dissolve nel mezzo interstellare, che arricchisce degli elementi pesanti prodotti nel corso della vita della stella, e scompare. Nonostante ciò, i resti osservabili sono numerosi, perché le supernovae esplodono al ritmo di una ogni qualche decina d'anni nella nostra galassia. Gli oggetti compatti, invece, sono immortali o quasi. Il resto di supernova più famoso e più osservato con telescopi professionali, anche se piuttosto difficile da osservare a causa della sua grande lontananza, è quello della Supernova 1987a, la cui esplosione è stata visibile dalla Terra il 23 febbraio 1987, nella Grande Nube di Magellano, alla distanza di 168 000 anni luce. Molto più vicina è la Nebulosa del Granchio, resto di un'esplosione rilevata nell'anno 1054 e registrata dagli astronomi cinesi, con al centro una giovane stella di neutroni. Una supernova vicina alla Terra (in inglese near-Earth supernova) è una supernova abbastanza vicina alla Terra da avere effetti notevoli sulla biosfera. Supernove particolarmente energetiche possono rientrare in questa categoria anche se distanti fino a 3000 anni luce. I lampi gamma provenienti da una supernova possono indurre reazioni chimiche nell'alta atmosfera terrestre che hanno l'effetto di convertire l'azoto in ossidi di azoto, impoverendo l'ozonosfera abbastanza da esporre la superficie alla radiazione solare e cosmica. Si pensa che ciò sia accaduto in coincidenza della estinzione dell'Ordoviciano-Siluriano, avvenuta circa 450 milioni di anni fa che causò la morte di circa il 60% degli organismi viventi sulla Terra. In uno studio del 1996 si è ipotizzato che tracce di supernove passate potessero essere rilevate sulla Terra mediante la ricerca di determinati isotopi negli strati rocciosi: in particolare, la presenza di ferro-60, riscontrabile nelle rocce dei fondali dell'Oceano Pacifico, sarebbe riconducibile a questi eventi. Nel 2009, un elevato livello di ioni nitrati fu rilevato a una certa profondità nei ghiacci antartici in corrispondenza delle supernove del 1006 e 1054. I raggi gamma provenienti da queste supernove possono avere prodotto ossidi di azoto che sono rimasti intrappolati nei ghiacci. Le supernove di Tipo I sono considerate quelle potenzialmente più pericolose per la Terra. Poiché derivano da deboli nane bianche, esse possono prodursi in modo impredicibile in sistemi stellari poco studiati. È stata avanzata l'ipotesi che supernove di questo tipo devono essere distanti non più di 1000 parsec (circa 3300 anni luce) per avere effetti sulla Terra. Stime risalenti al 2003 valutano che una supernova di Tipo II dovrebbe avere una distanza minore di 8 parsec (26 anni luce) dalla Terra per distruggerne metà dello strato di ozono[116]. Molte stelle massicce appartenenti alla Via Lattea sono state proposte come possibili progenitrici di supernove nei prossimi milioni di anni. Alcune di esse sono ρ Cassiopeiae, η Carinae,, RS Ophiuchi, U Scorpii, VY Canis Majoris, Betelgeuse, Antares e Spica. Anche molte stelle di Wolf-Rayet come γ Velorum, WR 104 e quelle appartenenti all'ammasso Quintupletto sono state indicate come possibili progenitrici di supernove in un futuro relativamente vicino. La candidata più vicina alla Terra è IK Pegasi (HR 8210), distante circa 150 anni luce. Questa stella binaria stretta è formata da una stella di sequenza principale e da una nana bianca, distanti 31 milioni di km fra loro. La nana bianca ha una massa stimata attuale di 1,15 M☉ e si ritiene che nei prossimi milioni di anni riceverà dalla sua compagna, diventata una gigante rossa, sufficiente materiale da raggiungere la massa critica per innescare l'esplosione di una supernova di Tipo Ia. A quella distanza l'esplosione di una supernova di tipo Ia potrebbe essere pericolosa per la Terra, tuttavia non essendo la principale ancora entrata nello stadio finale della sua evoluzione, ciò avverrà in tempi relativamente lunghi, quando il sistema si sarà considerevolmente allontanato dal Sole. Parliamo, adesso, delle ipernovae. Un'ipernova è un'ipotetica esplosione stellare simile alla supernova ma con un rilascio di energia almeno 100 volte superiore. Alcune stelle eccezionalmente grandi al momento della loro morte potrebbero produrre un'ipernova, ad esempio stelle collapsar. Ne sono state rilevate poche fino a oggi, di conseguenza rare sono state le possibilità di studiarne i diversi comportamenti. La celeberrima stella Eta Carinae è una delle candidate a produrre un'ipernova. In un'ipernova le energie in gioco raggiungono valori talmente elevati da poter essere paragonate alla potenza dei raggi cosmici, e si sospetta che i gamma ray burst (GRB) altro non siano che le conseguenze di esplosioni di ipernove. Il satellite ROSAT ha trovato, nella radiazione X, presso la galassia M101 due bolle in forte espansione; una di queste toccava la velocità di 350 km/s, e la sua forza superava di 10 volte quella dell'esplosione di una supernova. Si ritiene che ciò sia provocato dall'esplosione di una stella molto massiccia, quando il suo nucleo metallico collassa su sé stesso per formare un buco nero; il tutto comincerebbe a ruotare così rapidamente che il campo magnetico diverrebbe sufficientemente grande da poter espellerlo nel tempo di pochi secondi e creare i gamma ray burst, e dal loro stesso studio si potrebbe arrivare alla conclusione che le due entità siano la stessa cosa. Torniamo a parlare delle ipernove. Le loro intense emissioni di energia provengono da qualunque direzione del cielo si osservi, segno questo di una distribuzione uniforme di questi oggetti; questa energia arriva, a volte, ad essere un milione di miliardi di volte maggiore di quella che emette il nostro Sole. Con l'entrata in opera del satellite Beppo-SAX, sono aumentate di molto le conoscenze al riguardo di questi fenomeni: infatti, entro poche ore, si riesce a stabilire la direzione di provenienza dei GRB, e ciò consente di poter rilevare i dati di quello che rimane dell'avvenuta esplosione. I possibili meccanismi che causano tutto ciò possono essere due: l'esplosione di una ipernova o la collisione fra due oggetti compatti, stelle di neutroni o buchi neri. La prima ipotesi vuole che i GRB siano l'effetto dell'esplosione di una stella di grande massa, più potente di quella di una supernova, per cui è stato coniato questo termine (ipernova), e ciò che rimane alla fine dell'esplosione è un buco nero. L'analisi di questi residui ha stabilito che il fenomeno avviene al di fuori della nostra galassia, ad una distanza da noi superiore ai 10 miliardi di anni luce, quindi lo studio di queste emissioni ci permette di approfondire le conoscenze dell'universo quando era ai primordi della propria esistenza. Parliamo ora dei collapser. Una collapsar è una stella di Wolf-Rayet in rapida rotazione attorno al proprio asse avente un nucleo di massa superiore alle 30 masse solari. Collassando, essa può generare un buco nero in rotazione, che attira la materia interstellare circostante accelerandola a velocità relativistiche caratterizzate da un fattore di Lorentz di circa 150, parametro che include questi oggetti tra i più veloci conosciuti. Le collapsar sono anche considerate delle supernovae di tipo Ib "fallite". Si crede che le collapsar siano la causa dei lampi gamma lunghi (con durata superiore ai 2 secondi), dal momento che lungo l'asse di rotazione del buco nero sono creati violenti getti di energia che sono la causa di intensi lampi di radiazione (osservabili solo se ci si trova lungo la direzione del getto). Un possibile esempio di collapsar è la supernova SN1998bw, alla quale è associato il lampo gamma GRB980425. Essa è stata classificata come supernova di tipo Ic a causa di un'anomalia del suo spettro nel campo delle onde radio, indizio della presenza di materia accelerata a velocità relativistiche. Osservazioni effettuate con il telescopio spaziale Hubble hanno portato un gruppo di scienziati del California Institute of Technology di Pasadena a scoprire la prova dell'esistenza di una supernova durante l'indagine del GRB 011121. Questo suffragherebbe la validità del modello delle collapsar, il quale prevede che una stella supermassiccia quando esplode dia origine ad un gamma ray burst (GRB) e che i detriti della supernova momentaneamente divengano più brillanti, mentre il lampo si affievolisce. Nello stesso tempo un gruppo di astronomi dell'Università di Leicester mette in crisi la validità di questo modello: da misure dello spettro del GRB 011211 che si è originato dopo l'esplosione di una supernova, è risultato che la stella supermassiccia è esplosa eiettando un guscio di detriti il quale è stato riscaldato dopo diversi giorni dell'emissione del GRB; ciò avvalorerebbe la teoria della supernova, secondo la quale l'esplosione origina una stella di neutroni che dopo alcuni mesi collassa ulteriormente divenendo un buco nero ed emettendo raggi gamma. L'energia prodotta in un secondo durante l'esplosione è estremamente alta e arriva a circa 10^47 joule, che corrisponde a 1.000 volte l'energia generata dal Sole in 10 miliardi di anni. La caduta di materiale all'interno della stella forma un buco nero ed anche getti diretti verso l'esterno lungo i poli da cui fuoriesce materiale ed energia ad una velocità che è un terzo di quella della luce; si forma un getto polare, simile ad un cono appuntito con un angolo di circa 20 gradi. Il getto irrompe dai poli come un tremendo geyser, che squarcia la stella; da questo istante la collapsar diventa una palla di fuoco che scaglia materiale a velocità relativistica nel vento solare che la stella aveva soffiato fino a poco prima verso il mezzo interstellare.

Mentre all'interno del globulo il collasso gravitazionale causa un incremento della densità materiale, l'energia potenziale gravitazionale viene convertita in energia termica, con un conseguente aumento della temperatura: si forma in tal modo una protostella, circondata da un disco che ha il compito di accrescerne la massa. 4 Il periodo in cui l'astro è soggetto al collasso, fino all'innesco, nelle parti centrali della protostella, delle reazioni di fusione dell'idrogeno in elio, è variabile. Una stella massiccia in formazione permane in questa fase per qualche centinaio di migliaia di anni, mentre per una stella di massa medio-piccola dura un periodo di circa 10-15 milioni di anni. Se possiede una massa inferiore a 0,08 M☉, la protostella non raggiunge l'ignizione delle reazioni nucleari e si trasforma in una fredda e poco brillante nana bruna; 6 se possiede una massa fino ad otto masse solari, si forma una stella pre-sequenza principale, spesso circondata da un disco protoplanetario; se la massa è superiore ad 8 M☉, la stella raggiunge direttamente la sequenza principale senza passare per questa fase. Le stelle pre-sequenza principale si dividono in due categorie: le stelle T Tauri (e FU Orionis), che hanno una massa non superiore a due masse solari, e le stelle Ae/Be di Herbig, con masse fino ad otto masse solari. Queste stelle sono però caratterizzate da forti instabilità e variabilità, poiché non si trovano ancora in una situazione di equilibrio idrostatico. Un fenomeno tipico della fase T Tauri sono gli oggetti di Herbig-Haro, caratteristiche nebulose a emissione originate dalla collisione tra i flussi molecolari in uscita dai poli stellari e il mezzo interstellare. Enigmatico è il meccanismo di formazione delle stelle massicce. Le stelle di classe B (≥9M☉), nel momento in cui al loro interno si innescano le reazioni nucleari, si trovano ancora nel pieno della fase di accrescimento, la quale sarebbe contrastata e frenata dalla radiazione prodotta dal giovane astro; tuttavia, come accade per le stelle meno massicce, sembra che si formino dei dischi associati a getti polari che permetterebbero all'accrescimento di proseguire. 5 Analogamente, per quanto riguarda le stelle di classe O (>15M☉), le reazioni subentrano durante la fase di accrescimento, la quale prosegue però grazie alla formazione di enormi strutture toroidali, fortemente instabili. Le stelle trascorrono circa il 90% della propria esistenza in una fase di stabilità durante la quale fondono l'idrogeno del proprio nucleo in elio a temperatura e pressione elevate; tale fase prende il nome di sequenza principale. In questa fase, ogni stella genera un vento di particelle cariche che provoca una continua fuoriuscita di materia nello spazio (che per gran parte delle stelle risulta irrisoria). Il Sole, ad esempio, perde, nel vento solare, 10−14 masse solari di materia all'anno, ma le stelle più massicce arrivano a perderne decisamente di più, sino a 10−7 - 10−5 masse solari all'anno; tale perdita può riflettersi in maniera sostanziale sull'evoluzione dell'astro. La durata della fase di sequenza principale dipende innanzi tutto dalla quantità di combustibile nucleare disponibile, quindi dalla velocità a cui esso è fuso; vale a dire, dalla massa iniziale e dalla luminosità della stella. La permanenza del Sole nella sequenza principale è stimata in circa 1010 anni. Le stelle più grandi consumano il proprio "carburante" piuttosto velocemente ed hanno una vita decisamente più breve (qualche decina o centinaio di milioni di anni); le stelle più piccole invece bruciano l'idrogeno del nucleo molto lentamente ed hanno un'esistenza molto più lunga (decine o centinaia di miliardi di anni). Oltre alla massa, un ruolo preminente nell'evoluzione dell'astro è rivestito dalla propria metallicità, che influenza la durata della sequenza principale, l'intensità del campo magnetico 11 e del vento stellare. Le vecchie stelle di popolazione II hanno una metallicità minore delle più giovani stelle di popolazione I, poiché le nubi molecolari da cui si sono formate queste ultime possedevano una maggiore quantità di metalli. La sequenza principale termina non appena l'idrogeno, contenuto nel nucleo della stella, è stato completamente convertito in elio dalla fusione nucleare; la successiva evoluzione della stella segue vie diverse a seconda della massa dell'oggetto celeste. Le stelle con masse comprese tra 0,08 e 0,4 masse solari, le nane rosse, si riscaldano mano a mano che l'idrogeno viene consumato al loro interno, accelerando la velocità delle reazioni nucleari e divenendo per breve tempo delle stelle azzurre; quando tutto l'idrogeno negli strati interni è stato convertito in elio, esse si contraggono gradualmente, diminuendo di luminosità ed evolvendo in nane bianche costituite prevalentemente da elio. Tuttavia, poiché la durata della sequenza principale per una stella di questo tipo è stata stimata sugli 80 miliardi - 1 bilione di anni e l'attuale età dell'universo si aggira sui 13,7 miliardi di anni, pare logico dedurne che nessuna nana rossa abbia ancora avuto il tempo di giungere al termine della sequenza principale. Le stelle la cui massa è compresa tra 0,8 ed 8 masse solari attraversano una fase di notevole instabilità alla fine della sequenza principale: il nucleo (core) subisce diversi collassi gravitazionali, incrementando la propria temperatura, mentre gli strati più esterni, in reazione al vasto surplus energetico che ricevono dal core in contrazione, 22 si espandono e si raffreddano, assumendo di conseguenza una colorazione via via sempre più tendente al rosso. 16 Ad un certo punto, l'energia sprigionata dal collasso gravitazionale permette allo strato di idrogeno immediatamente circostante il nucleo di raggiungere la temperatura di ignizione della fusione nucleare. A questo punto, la stella, dopo esser passata per la fase altamente instabile di subgigante, si trasforma in una fredda ma brillante gigante rossa con un nucleo inerte di elio e un guscio in cui prosegue la fusione dell'idrogeno e permane in questa fase per circa un miliardo di anni. Se la stella possiede una massa sufficiente (~ 1 M☉), una complessa serie di contrazioni e collassi gravitazionali provoca un forte innalzamento della temperatura nucleare sino ad oltre 100 milioni di kelvin, che segna il violento innesco (flash) della fusione dell'elio in carbonio e ossigeno tramite il processo tre alfa, mentre nel guscio immediatamente superiore continua il processo di fusione dell'idrogeno residuo in elio. La stella, raggiungendo questo stadio evolutivo, arriva ad un nuovo equilibrio e si contrae leggermente passando dal ramo delle giganti rosse al ramo orizzontale del diagramma H-R. Non appena l'elio è stato completamente esaurito all'interno del core, lo strato attiguo, che in precedenza ha fuso l'idrogeno in elio, inizia a fondere quest'ultimo in carbonio, mentre sopra di esso un altro strato continua a fondere parte dell'idrogeno restante in elio; la stella entra così nel ramo asintotico delle giganti (AGB, acronimo di Asymptotic Giant Branch). Gli strati più esterni di una gigante rossa o di una stella AGB possono estendersi per diverse centinaia di volte il diametro del Sole, arrivando ad avere raggi dell'ordine dei 108 km (alcune unità astronomiche), come nel caso di Mira (ο Ceti), una gigante del ramo asintotico con un raggio di 5 × 108 km (3 U.A.). Se la stella ha una massa sufficiente (non superiore ad 8-9 M☉ ), col tempo è possibile l'innesco anche della fusione di una parte del carbonio in ossigeno, neon e magnesio. Qualora la velocità delle reazioni nucleari subisca un rallentamento, la stella compensa questo deficit energetico contraendo le proprie dimensioni e riscaldando la propria superficie; a questo punto la stella attraversa una fase evolutivamente parallela a quella di gigante rossa, ma caratterizzata da una temperatura superficiale decisamente più elevata, che prende il nome di fase di gigante blu. 23 Quando termina il processo di fusione dell'idrogeno in elio ed inizia la conversione di quest'ultimo in carbonio, le stelle massicce (con massa superiore ad 8 M☉) si espandono raggiungendo lo stadio di supergigante rossa. Non appena si esaurisce anche la fusione dell'elio, i processi nucleari non si arrestano ma, complice una serie di successivi collassi del nucleo ed aumenti di temperatura e pressione, proseguono con la sintesi di altri elementi più pesanti: ossigeno, neon, silicio e zolfo. In tali stelle, poco prima della loro fine, può svolgersi in contemporanea la nucleosintesi di più elementi all'interno di un nucleo che appare stratificato; tale struttura è paragonata da molti astrofisici agli strati concentrici di una cipolla. In ciascun guscio avviene la fusione di un differente elemento: il più esterno fonde idrogeno in elio, quello immediatamente sotto fonde elio in carbonio e via dicendo, a temperature e pressioni sempre crescenti man mano che si procede verso il centro. Il collasso di ciascuno strato è sostanzialmente evitato dal calore e dalla pressione di radiazione dello strato sottostante, dove le reazioni procedono a un regime più intenso. Il prodotto finale della nucleosintesi è il nichel-56 (56Ni), risultato della fusione del silicio, che viene completata nel giro di pochi giorni. Il nichel-56 decade rapidamente in ferro-56 (56Fe). Poiché i nuclei del ferro possiedono un'energia di legame nettamente superiore a quella di qualunque altro elemento, la loro fusione, anziché essere un processo esotermico (che produce ed emette energia), è fortemente endotermica (cioè richiede e consuma energia). La supergigante rossa può anche attraversare uno stadio alternativo, che prende il nome di supergigante blu. Durante questa fase la fusione nucleare avviene in maniera più lenta; per via di tale rallentamento, l'astro si contrae e, poiché una grande quantità di energia viene emessa da una superficie fotosferica più piccola, la temperatura superficiale aumenta, donde il colore blu; l'astro tuttavia, prima di raggiungere questo stadio, passa per la fase di supergigante gialla, caratterizzata da una temperatura e da dimensioni intermedie rispetto alle due fasi. Una supergigante rossa può in qualunque momento, a patto che rallentino le reazioni nucleari, trasformarsi in una supergigante blu. Nelle stelle più massicce, ormai in una fase evolutiva avanzata, un grande nucleo di ferro inerte si deposita al centro dell'astro; in tali oggetti gli elementi più pesanti, spinti da moti convettivi, possono affiorare in superficie, formando degli oggetti molto evoluti noti come stelle di Wolf-Rayet, caratterizzate da forti venti stellari che provocano una consistente perdita di massa. 32 Quando una stella è prossima alla fine della propria esistenza, la pressione di radiazione del nucleo non è più in grado di contrastare la gravità degli strati più esterni dell'astro. Di conseguenza il nucleo va incontro ad un collasso, mentre gli strati più esterni vengono espulsi in maniera più o meno violenta; ciò che resta è un oggetto estremamente denso: una stella compatta, costituita da materia in uno stato altamente degenere. In seguito ai progressivi collassi e riscaldamenti susseguitisi durante le fasi sopra descritte, il nucleo della stella assume una configurazione degenere: 34 si forma in questo modo la nana bianca, un oggetto dalle dimensioni piuttosto piccole (paragonabili all'incirca a quelle della Terra) con una massa minore o uguale al limite di Chandrasekhar (1,44 masse solari). Quando nel nucleo cessa completamente la fusione del combustibile nucleare, la stella può seguire due diverse vie a seconda della massa. Se ha una massa compresa tra 0,08 e 0,5 masse solari, la stella morente dà luogo ad una nana bianca di elio senza alcuna fase intermedia, espellendo gli strati esterni sotto forma di vento stellare. Se invece la sua massa è compresa tra 0,5 ed 8 masse solari, si generano delle violente pulsazioni termiche all'interno dell'astro che causano l'espulsione dei suoi strati più esterni in una sorta di "supervento" che assorbe la radiazione ultravioletta emessa a seguito dell'alta temperatura degli strati interni dell'astro. Tale radiazione viene poi riemessa sotto forma di luce visibile dall'involucro dei gas, i quali vanno a costituire una nebulosità in espansione, la nebulosa protoplanetaria prima e planetaria poi, al cui centro rimane il cosiddetto nucleo della nebulosa planetaria (PNN, dall'inglese Planetary Nebula Nucleus), che diverrà poi la nana bianca. Una nana bianca appena formata ha una temperatura molto elevata, pari a circa 100-200 milioni di K, che diminuisce in funzione degli scambi termici con lo spazio circostante, finché l'oggetto non raggiunge lo stadio ultimo di nana nera. 37 Si tratta però di un modello teorico, poiché sino ad ora non è stata ancora osservata alcuna nana nera; perciò gli astronomi ritengono che il tempo previsto perché una nana bianca si raffreddi del tutto sia di gran lunga superiore all'attuale età dell'Universo. 34 Nelle stelle con masse superiori ad 8 masse solari, la fusione nucleare continua finché il nucleo non raggiunge una massa superiore al Limite di Chandrasekhar. Oltrepassato quest'ultimo, il nucleo non riesce più a tollerare la sua stessa massa e va incontro ad un improvviso e irreversibile collasso. Gli elettroni urtano contro i protoni dando origine a neutroni e neutrini assieme ad un forte decadimento beta ed a fenomeni di cattura elettronica. L'onda d'urto generata da questo improvviso collasso provoca la catastrofica esplosione della stella in una brillantissima supernova di tipo II o di tipo Ib o Ic, se si trattava di una stella particolarmente massiccia. Le supernovae hanno una luminosità tale da superare, anche se per breve tempo, la luminosità complessiva dell'intera galassia che le ospita. Le supernovae esplose in epoca storica nella Via Lattea furono osservate ad occhio nudo dagli uomini, che le ritenevano erroneamente delle "nuove stelle" (donde il termine nova, utilizzato inizialmente per designarle) che comparivano in regioni del cielo dove prima non sembravano essercene. L'energia liberata nell'esplosione è talmente elevata da consentire la fusione dei prodotti della nucleosintesi stellare in elementi ancora più pesanti, quali oro, magnesio ecc; questo fenomeno è detto nucleosintesi delle supernovae. L'esplosione della supernova diffonde nello spazio la gran parte della materia che costituiva la stella; tale materia forma il cosiddetto resto di supernova, mentre il nucleo residuo sopravvive in uno stato altamente degenere. Se la massa del residuo è compresa tra 1,4 e 3,8 masse solari, esso collassa in una stella di neutroni (che talvolta si manifesta come pulsar), che si configura stabile poiché il collasso gravitazionale, cui andrebbe naturalmente incontro, è contrastato dalla pressione del neutronio, la particolare materia degenere di cui tali oggetti sono costituiti. Tali oggetti hanno una densità elevatissima (circa 1017 kg/m3) e sono costituiti da neutroni, con una certa percentuale di materia esotica, principalmente materia di quark, presente probabilmente nel suo nucleo. Nel caso in cui la stella originaria sia talmente massiccia che il nucleo residuo mantiene una massa superiore a 3,8 masse solari (limite di Tolman-Oppenheimer-Volkoff), nessuna forza è in grado di contrastare il collasso gravitazionale ed il nucleo collassa fino a raggiungere dimensioni inferiori al raggio di Schwarzschild: si origina così un buco nero stellare. La materia costituente il buco nero si trova in un particolare stato, altamente degenere, che i fisici non sono ancora riusciti ad esplicare. Gli strati esterni della stella espulsi nella supernova contengono una grande quantità di elementi pesanti che possono essere reimpiegati in nuovi processi di formazione stellare; tali elementi possono anche permettere la formazione di sistemi extrasolari, che possono contenere, eventualmente, anche dei pianeti di tipo roccioso. Le esplosioni delle supernovae ed i venti delle stelle massicce svolgono un ruolo di primo piano nel plasmare le strutture del mezzo interstellare. La distinzione tra stelle nane e stelle giganti è una distinzione effettuata sulla base della loro classificazione spettrale, non sulla base delle loro dimensioni fisiche. Le stelle nane sono caratterizzate da una densità più elevata. Questa differenza si traduce nella maggiore larghezza delle righe del loro spettro e quindi in una classe di luminosità più bassa. Maggiore è la densità, maggiore è la larghezza delle righe. In ordine di densità decrescente e di luminosità crescente distinguiamo le seguenti classi di luminosità:

  • Subnane: classe di luminosità VI;
  • Nane: classe di luminosità V;
  • Subgiganti: classe di luminosità IV;
  • Giganti: classe di luminosità III;
  • Giganti brillanti: classe di luminosità II;
  • Supergiganti: classe di luminosità I.

Le nane rosse, le nane arancioni e le nane gialle sono effettivamente più piccole e deboli delle stelle giganti dei rispettivi colori perché hanno una superficie radiante proporzionalmente più piccola. Tuttavia per le stelle più massicce, di colore bianco, azzurro e blu, la differenza di taglia e di brillantezza fra le "nane" di sequenza principale e le "giganti" diventa sempre più piccola, finché per le stelle più calde diviene non più osservabile direttamente. Infine, le nane bianche non rientrano nella classificazione spettrale su data, pur essendo a volte classificate con classe di luminosità VII, perché così come le stelle di neutroni non sono classificabili come stelle, cioè come oggetti il cui equilibrio idrostatico è sorretto da una adeguata produzione di energia nucleare nelle regioni interne. Questo tipo di oggetti sono sorretti dalla elevatissima degenerazione del gas che le compone, non possono in nessun modo ospitare fenomeni di fusione nucleare. Sia le nane bianche che le stelle a neutroni appartengono alla classe di sorgenti note come oggetti compatti e rappresentano i resti di una porzione più o meno ampia del nucleo dei loro progenitori stellari.


Crea il tuo sito web gratis! Questo sito è stato creato con Webnode. Crea il tuo sito gratuito oggi stesso! Inizia