Sagittarius A*

Le Galassie sono strutture gigantesche, con forme talvolta molto articolate. Ma cosa governa, dal punto di vista gravitazionale, le galassie? I buchi neri supermassicci sono la risposta. Secondo gli astrofisici ce ne è uno in ogni galassia, anche nella Via Lattea. E quello al centro della nostra galassia è... Sagittarius A*! Seguiteci su Eagle sera per saperne di più.




Iniziamo rispondendo a una domanda fondamentale: cos'è una galassia? Si tratta di una domanda fondamentale quando trattiamo di buchi neri supermassicci...


Le Galassie

Una galassia è un grande insieme di stelle, sistemi, ammassi ed associazioni stellari, gas e polveri (che formano il mezzo interstellare), legati dalla reciproca forza di gravità. Il nome deriva dal greco γαλαξίας (galaxìas), che significa "di latte, latteo"; è una chiara allusione alla Via Lattea, la Galassia per eccellenza, di cui fa parte il sistema solare. Le galassie sono oggetti dalle vastissime dimensioni; variano dalle più piccole galassie nane, contenenti poche centinaia di milioni di stelle, alle galassie giganti, che hanno anche mille miliardi di stelle, orbitanti attorno ad un comune centro di massa. Le galassie sono state categorizzate secondo la loro forma apparente, ossia sulla base della loro morfologia visuale. Una tipologia molto diffusa è quella ellittica, che, come si può ben arguire dal nome, ha un profilo ad ellisse. Le galassie spirale possiedono invece una forma discoidale con delle strutture spiraliformi che si dipartono dal nucleo. Le galassie con forma irregolare o insolita sono dette galassie peculiari; la loro strana forma è solitamente il risultato degli effetti delle interazioni mareali con le galassie vicine. Se tali interazioni sono particolarmente intense, a causa della grande vicinanza tra le strutture galattiche, può aver luogo la fusione delle due galassie, che risulta nella formazione di una galassia irregolare. La collisione tra due galassie dà spesso origine ad intensi fenomeni di formazione stellare (in gergo starburst). Nell'universo osservabile sono presenti probabilmente più di 100 miliardi di galassie; secondo nuove ricerche, tuttavia, il numero stimato di galassie nell'universo risulterebbe più alto di almeno dieci volte e oltre il 90% delle galassie nell'universo osservabile risulterebbe non rilevabile con i telescopi di cui disponiamo oggi, ancora troppo poco potenti. Gran parte di esse ha un diametro compreso fra 1000 e 100.000 parsec e sono di solito separate da distanze dell'ordine di milioni di parsec (megaparsec, Mpc). Lo spazio intergalattico è parzialmente colmato da un tenue gas, la cui densità è inferiore ad un atomo al metro cubo. Nella maggior parte dei casi le galassie sono disposte nell'Universo organizzate secondo precise gerarchie associative, dalle più piccole associazioni, formate da alcune galassie, agli ammassi, che possono essere formati anche da migliaia di galassie. Tali strutture, a loro volta, si associano nei più imponenti superammassi galattici. Queste grandi strutture sono di solito disposte all'interno di enormi correnti (come la cosiddetta Grande Muraglia) e filamenti, che circondano immensi vuoti dell'Universo. Sebbene non sia ancora del tutto ben chiaro, la materia oscura sembra costituire circa il 90% della massa di gran parte delle galassie a spirale, mentre per le galassie ellittiche si ritiene che questa percentuale sia minore, variando fra lo 0 e circa il 50%. La parola "galassia" deriva dal termine greco che indicava la Via Lattea, Γαλαξίας (Galaxìas) per l'appunto, che significa "latteo", o anche κύκλος γαλακτικός (kyklos galaktikòs), col significato di "circolo galattico". Il nome deriva da un episodio piuttosto noto della mitologia greca. Zeus, invaghitosi di Alcmena, dopo avere assunto le fattezze del marito, il re di Trezene Anfitrione, ebbe un rapporto con lei, che rimase incinta. Dal rapporto nacque Eracle, che Zeus decise di porre, appena nato, nel seno della sua consorte Era mentre lei era addormentata, cosicché il bambino potesse bere il suo latte divino per diventare immortale. Era si svegliò durante l'allattamento e si rese conto che stava nutrendo un bambino sconosciuto: respinse allora il bambino e il latte, sprizzato dalle mammelle, schizzò via, andando a bagnare il cielo notturno; si sarebbe formata in questo modo, secondo gli antichi Greci, la banda chiara di luce nota come "Via Lattea". L'osservazione amatoriale delle galassie, rispetto ad altri oggetti del profondo cielo, è resa difficoltosa da due fattori principali: A) la grandissima distanza che ci separa da esse, che fa in modo che solo le più vicine siano visibili con relativa facilità, quindi la loro luminosità superficiale, in genere molto debole. B) molte delle galassie più vicine a noi sono galassie nane di piccole dimensioni, formate solo da alcuni milioni di stelle, visibili solo con un potente telescopio (e non è un caso che molte di queste siano state scoperte solo in tempi recenti). Oltre alla Via Lattea, la galassia all'interno della quale si trova il nostro sistema solare, solo altre tre sono visibili ad occhio nudo: le Nubi di Magellano (Grande e Piccola Nube di Magellano), visibili solamente dall'emisfero australe del nostro pianeta, si presentano come macchie irregolari, quasi dei frammenti staccati della Via Lattea, la cui scia luminosa corre a breve distanza; si tratta di due galassie molto vicine, orbitanti attorno alla nostra; tra le galassie giganti invece, l'unica visibile ad occhio nudo è la Galassia di Andromeda, osservabile principalmente dall'emisfero boreale terrestre. È la galassia gigante più vicina a noi e anche l'oggetto più lontano visibile ad occhio nudo: si presenta come un alone chiaro allungato, privo di dettagli. La Galassia del Triangolo, una galassia spirale di medie dimensioni poco più lontana di Andromeda, risulta già invisibile ad occhio nudo, rivelandosi solo con un binocolo nelle notti più limpide. Tra le galassie prossime al nostro Gruppo Locale alcune degne di nota sono in direzione della costellazione dell'Orsa Maggiore (M82 e M81), ma già sono visibili solo con un telescopio amatoriale. Dopo la scoperta, nei primi decenni del XX secolo, che le cosiddette nebulose spiraliformi erano entità distinte (chiamate galassie o universi-isola) dalla Via Lattea, si sono condotte numerose osservazioni volte a studiare tali oggetti, principalmente alle lunghezze d'onda della luce visibile. Il picco di radiazione di gran parte delle stelle, infatti, ricade entro questo range; pertanto l'osservazione delle stelle che formano le galassie costituiva la quasi totalità dell'astronomia ottica. Alle lunghezze d'onda del visibile è possibile osservare in maniera ottimale le regioni H II (costituite da gas ionizzato), allo scopo di esaminare la distribuzione delle polveri all'interno dei bracci delle galassie a spirale. La polvere cosmica, presente nel mezzo interstellare, è però opaca alla luce visibile, mentre risulta già più trasparente all'infrarosso lontano, utilizzato per osservare nel dettaglio le regioni interne delle nubi molecolari giganti, sede di intensa formazione stellare, ed i centri galattici. Gli infrarossi sono anche utilizzati per osservare le galassie più lontane, che mostrano un alto spostamento verso il rosso; esse ci appaiono come dovevano presentarsi poco dopo la loro formazione, nei primi stadi dell'evoluzione dell'Universo. Tuttavia, poiché il vapore acqueo e il diossido di carbonio della nostra atmosfera assorbono una parte rilevante della porzione utile dello spettro infrarosso, per le osservazioni nell'infrarosso sono usati solamente telescopi ad alta quota o in orbita nello spazio. Il primo studio sulle galassie, in particolare su quelle attive, non basato sulle frequenze del visibile fu condotto tramite le radiofrequenze; l'atmosfera è infatti quasi totalmente trasparente alle onde radio di frequenza compresa fra 5 MHz e 30 GHz (la ionosfera blocca i segnali al di sotto di questa fascia). Grandi radiointerferometri sono stati usati per mappare i getti emessi dai nuclei delle galassie attive. I radiotelescopi sono in grado di osservare l'idrogeno neutro, includendo, potenzialmente, anche la materia non ionizzata dell'Universo primordiale collassata in seguito nelle galassie. I telescopi a raggi X e ad ultravioletti possono inoltre osservare fenomeni galattici altamente energetici. Un intenso brillamento (flare) agli ultravioletti fu osservato nel 2006 mentre una stella di una galassia distante era catturata dal forte campo gravitazionale di un buco nero. La distribuzione del gas caldo negli ammassi galattici può essere mappata attraverso i raggi X; infine, l'esistenza dei buchi neri supermassicci nei nuclei delle galassie fu confermata proprio attraverso l'astronomia a raggi X. La scoperta che il Sole è all'interno di una galassia, e che vi sono innumerevoli altre galassie, è strettamente legata alla scoperta della vera natura della Via Lattea. Prima dell'avvento del telescopio, oggetti lontani come le galassie erano del tutto sconosciuti, data la loro bassa luminosità e la grande distanza. Alle civiltà classiche poteva essere nota soltanto una macchia chiara in direzione della costellazione di Andromeda (quella che fu per lungo tempo chiamata "Grande Nube di Andromeda"), visibile senza difficoltà ad occhio nudo, ma la cui natura era del tutto ignota. Le due Nubi di Magellano, le altre galassie visibili ad occhio nudo, possedevano una declinazione troppo meridionale perché potessero essere osservate dalle latitudini temperate boreali. Furono sicuramente osservate dalle popolazioni dell'emisfero sud, ma da parte loro ci sono giunti pochi riferimenti scritti. Il primo tentativo di catalogare quelli che allora erano chiamati "oggetti nebulosi" risale all'inizio del XVII secolo, ad opera del siciliano Giovan Battista Odierna, che inserì nel suo catalogo De Admirandis Coeli Characteribus del 1654 anche alcune di quelle che in seguito sarebbero state chiamate "galassie". Verso la fine del XVIII secolo, l'astronomo francese Charles Messier compilò un catalogo delle 109 nebulose più luminose, seguito poco dopo da un catalogo, che comprendeva altre 5000 nebulose, stilato dall'inglese William Herschel. Herschel fu inoltre il primo a tentare di descrivere la forma della Via Lattea e la posizione del Sole al suo interno; nel 1785 compì un conteggio scrupoloso del numero di stelle in seicento regioni differenti del cielo dell'emisfero boreale; egli notò che la densità stellare aumentava man mano che ci si avvicinava ad una determinata zona del cielo, coincidente col centro della Via Lattea, nella costellazione del Sagittario. Suo figlio John ripeté poi le misurazioni nell'emisfero meridionale, giungendo alle stesse conclusioni. Herschel senior disegnò poi un diagramma della forma della Galassia, considerando però erroneamente il Sole nei pressi del suo centro. Nel 1845, William Parsons costruì un nuovo telescopio che gli permise di distinguere le galassie ellittiche da quelle spirali; riuscì inoltre a distinguere sorgenti puntiformi di luce (ovvero delle stelle) in alcune di queste nebulose, dando credito all'ipotesi del filosofo tedesco Immanuel Kant, che riteneva che alcune nebulose fossero in realtà galassie distinte dalla Via Lattea. Nonostante questo, le galassie non furono universalmente accettate come entità separate dalla Via Lattea finché Edwin Hubble non risolse definitivamente la questione nei primi anni venti del XX secolo. Nel 1917 Heber Curtis osservò la supernova S Andromedae all'interno della "Grande Nebulosa di Andromeda" (M31); cercando poi con accuratezza nei registri fotografici ne scoprì altre undici. Curtis determinò che la magnitudine apparente di questi oggetti era 10 volte inferiore di quella che raggiungono gli oggetti all'interno della Via Lattea. Come risultato egli calcolò che la "nebulosa" dovesse trovarsi ad una distanza di circa 150.000 parsec; Curtis divenne così sostenitore della teoria degli "universi isola", che affermava che le nebulose di forma spirale erano in realtà galassie simili alla nostra, ma separate. Nel 1920 ebbe luogo il Grande Dibattito tra Harlow Shapley e Heber Curtis sulla natura della Via Lattea, delle nebulose spiraliformi e sulle dimensioni generali dell'Universo. Per supportare l'ipotesi che la Grande Nebulosa di Andromeda fosse in realtà una galassia esterna, Curtis indicò la presenza di macchie scure, situate nel piano galattico di Andromeda, simili alle nebulose oscure osservabili nella Via Lattea, e fece notare anche il notevole spostamento della galassia secondo l'effetto Doppler. Il problema fu definitivamente risolto da Edwin Hubble nei primi anni venti, grazie all'uso del nuovo e più potente telescopio Hooker, situato presso l'osservatorio di Monte Wilson. Lo scienziato americano fu in grado di risolvere le parti esterne di alcune nebulose spiraliformi come insiemi di stelle e tra esse identificò alcune variabili Cefeidi, che lo aiutarono a stimare la distanza di queste nebulose: queste si rivelarono troppo distanti per essere parte della Via Lattea. Nel 1936 lo stesso Hubble ideò un sistema di classificazione per le galassie ancora usato ai nostri giorni: la sequenza di Hubble. Lo schema classificativo della Sequenza di Hubble si basa sulla morfologia visuale delle galassie; esse si suddividono in tre tipi principali: ellittiche, spirali e irregolari. Dato che tale sequenza si basa esclusivamente su osservazioni di tipo prettamente morfologico visivo, essa non tiene in considerazione alcune delle caratteristiche più importanti delle galassie, quali il tasso di formazione stellare delle galassie starburst e l'attività nel nucleo delle galassie attive.

Galassie ellittiche

Il sistema di classificazione di Hubble considera le galassie come "ellittiche" (indicate dalla lettera "E") in base alla loro ellitticità, ossia alla loro apparenza sferica più o meno allungata; la scala di misura parte dalla classe E0, indicante le galassie di aspetto quasi sferico, alla classe E7, fortemente allungate. Queste galassie hanno un profilo ellissoidale, che conferisce loro un'apparenza più o meno ellittica a seconda dell'angolo di visuale. All'apparenza mostrano pochi dettagli e in genere possiedono al loro interno una quantità relativamente bassa di materia interstellare. Di conseguenza queste galassie possiedono un numero esiguo di ammassi aperti e un tasso ridotto di formazione stellare; sono formate anzi da stelle generalmente piuttosto vecchie ed evolute, orbitanti attorno ad un centro comune di gravità secondo direzioni casuali. Tali caratteristiche le rendono in parte simili ai ben più piccoli ammassi globulari. Le galassie più imponenti sono dette ellittiche giganti. Si pensa che molte galassie ellittiche si siano formate a causa di interazioni fra galassie, che terminano nella collisione e nella successiva fusione dell'una nell'altra; come conseguenza di ciò possono crescere di dimensioni fino a raggiungere il diametro delle galassie spirali, ma con un numero di stelle decisamente superiore. Le galassie ellittiche giganti sono spesso presenti al centro di grandi ammassi di galassie, di cui spesso costituiscono i componenti più massicci, dove le interazioni tra singole galassie possono avvenire più frequentemente. Le galassie starburst sono il risultato di collisioni galattiche che possono dar luogo ad una galassia ellittica.

Galassie spirali e spirali barrate

Le galassie spirali consistono in un disco di stelle e materia interstellare rotante attorno ad un centro, simile per composizione e caratteristiche ad una galassia ellittica, in quanto è composto da stelle generalmente di età avanzata. All'esterno del centro, chiamato bulge (o rigonfiamento centrale), si trovano i bracci di spirale, relativamente luminosi. Nello schema di classificazione di Hubble, le galassie spirali sono indicate con la lettera S, seguita dalle lettere minuscole a, b o c, che indicano il grado di spessore dei bracci di spirale e la dimensione del bulge centrale. Una galassia di tipo Sa possiede dei bracci molto ben avvolti e poco definiti ed un nucleo centrale relativamente grande; viceversa, un galassia di tipo Sc ha dei bracci ben definiti ed un rigonfiamento centrale molto ridotto. Nelle galassie a spirale i bracci hanno un andamento simile a quello di una spirale logaritmica, una figura che si può teoricamente mostrare come risultato di un disturbo nella rotazione uniforme della massa di stelle. Come le stelle, i bracci di spirale ruotano attorno al centro, ma con una velocità angolare che varia da punto a punto: questo significa che le stelle transitano all'interno e all'esterno dei bracci di spirale, e la loro velocità di rivoluzione diminuisce nelle stelle che si trovano nelle regioni esterne ai bracci, mentre è più rapida per le stelle che vi si trovano all'interno. Si pensa che i bracci di spirale siano delle aree ad alta densità di materia, o meglio delle onde di densità. Come le stelle si muovono attraverso il braccio, la velocità spaziale di ciascuna di esse viene modificata dalle forze gravitazionali della densità più elevata; questa velocità ridiminuisce come le stelle riescono dal braccio di spirale. Questo effetto ad "onda" può essere paragonato ad un punto di traffico intenso di un'autostrada, con le auto costrette a rallentare in determinati punti. I bracci di fatto sono visibili a causa della loro alta densità, che facilita per altro la formazione stellare, e spesso nascondono al loro interno stelle giovani e luminose. Un buon numero di galassie spirali mostrano una struttura stellare lineare a forma di barra che attraversa il nucleo, da cui si dipartono i bracci di spirale. Nella classificazione di Hubble tali galassie sono indicate con la sigla SB, accompagnata dalle lettere minuscole a, b o c, che indicano la forma e l'avvolgimento dei bracci di spirale allo stesso modo in cui vengono classificate le galassie spirali normali. Gli astrofisici ritengono che le barre siano delle strutture temporanee che si formano come risultato di un'onda di densità che irradia in direzioni opposte dal nucleo, oppure siano il risultato di forze di marea con un'altra galassia. Molte galassie spirali barrate sono attive, forse a causa dell'incanalamento dei gas all'interno del nucleo, lungo i bracci. La nostra Galassia, la Via Lattea è una galassia a spirale barrata di grandi dimensioni, con un diametro di circa 100.000 anni luce (30 kpc) ed uno spessore di circa 3000 anni luce (1 kpc); contiene circa 200 miliardi di stelle (2×1011) ed ha una massa totale di circa 600 miliardi (6×1011) di masse solari.

Galassie peculiari

Le galassie cosiddette peculiari sono formazioni che sviluppano proprietà insolite, dovute all'interazione e alle forze mareali di altre galassie. Un esempio di questa classe di oggetti è la galassia ad anello, che possiede una struttura anulare di stelle e mezzo interstellare che circonda una barra centrale. Si pensa che una galassia ad anello si possa formare qualora una galassia più piccola passi attraverso il nucleo di una galassia spirale. Probabilmente un evento come questo si è verificato nella Galassia di Andromeda, la quale, se osservata nell'infrarosso, mostra una struttura ad anello multipla. Una galassia lenticolare è invece una forma intermedia che ha sia le proprietà delle galassie ellittiche sia quelle delle galassie spirali. Sono classificate secondo la sequenza di Hubble con la sigla S0 e possiedono dei bracci di spirale non definiti, con un alone ellittico di stelle. In aggiunta a queste due classi esiste una grande varietà di galassie che non possono essere classificate né come ellittiche, né come spirali: di solito ci si riferisce a queste galassie con l'appellativo di galassie irregolari. Una galassia Irr-I possiede alcune strutture che non possono allinearsi con lo schema di Hubble; una galassia Irr-II invece non possiede neppure una struttura che ricordi la sequenza di Hubble, perché potrebbero essere state distrutte da diverse interazioni. Un esempio di galassie irregolari vicine alla nostra Galassia sono le due Nubi di Magellano.


Parliamo ora della definizione di buco nero supermassiccio...


Buchi neri supermassicci

Un buco nero supermassiccio, o supermassivo, è il più grande tipo di buco nero, con una massa milioni o miliardi di volte superiore a quella del Sole. Si ritiene che quasi tutte le galassie, inclusa la nostra Via Lattea, contengano un buco nero supermassiccio al loro centro. I buchi neri supermassicci hanno alcune interessanti proprietà che li distinguono dai loro simili di minori dimensioni:

Un buco nero supermassiccio, o supermassivo, è il più grande tipo di buco nero, con una massa milioni o miliardi di volte superiore a quella del Sole. Si ritiene che quasi tutte le galassie, inclusa la nostra Via Lattea, contengano un buco nero supermassiccio al loro centro. I buchi neri supermassicci hanno alcune interessanti proprietà che li distinguono dai loro simili di minori dimensioni:

  • la densità media, intesa come il rapporto fra massa del buco nero e volume racchiuso entro l'orizzonte degli eventi, di un buco nero supermassiccio può essere uguale (per buchi neri di 1,36 x 108 masse solari) o anche inferiore a quella dell'acqua (per buchi neri di massa maggiore di 1,36 x 108 masse solari). Infatti, tenendo conto che il raggio di Schwarzschild d'un grave aumenta linearmente con la sua massa, e che il volume di un oggetto sferico, come un buco nero non rotante, è proporzionale al cubo del suo raggio, si deduce che la densità di un buco nero è inversamente proporzionale al quadrato della sua massa: essa cala progressivamente all'aumentare delle sue dimensioni; quindi i buchi neri supermassicci hanno densità più basse di quelli più piccoli.
  • le forze di marea, molto intense presso i buchi neri minori, sono assai deboli in prossimità di quelli supermassicci: poiché la singolarità gravitazionale è così lontana dall'orizzonte degli eventi, un ipotetico astronauta che viaggiasse verso il centro del buco nero non esperimenterebbe forze di marea significative, prima d'inoltrarsi ampiamente dentro esso.

Sono stati ipotizzati vari modelli per spiegare la formazione di buchi neri di queste dimensioni. La prima e più ovvia è per accrezione lenta e graduale di materia a partire da un buco nero di grandezza stellare. Un secondo modello considera una grande nube di gas che collassa in una stella relativistica di dimensioni pari a centinaia di masse solari o anche più. Questa stella risulterebbe presto instabile alle perturbazioni radiali a causa della produzione di coppie elettrone-positrone nel suo nucleo e potrebbe quindi collassare in un buco nero senza esplodere in una supernova, che altrimenti emetterebbe gran parte della massa impedendole così di lasciare come residuo un buco nero supermassiccio. Un altro modello considera un denso ammasso stellare che va incontro a collasso perché la capacità termica negativa del sistema porta la dispersione delle velocità verso valori relativistici.  Un'ulteriore ipotesi è l'evoluzione di un buco nero primordiale prodottosi a causa della pressione esterna nei primi istanti dopo il Big Bang. Le difficoltà della formazione di un buco nero supermassiccio risiedono nell'enorme quantità di materia, dotata di un basso momento angolare, che deve venire condensata in un volume ristretto. Normalmente il processo di accrezione coinvolge la cessione verso l'esterno di una quantità di momento angolare e questo sembra essere un fattore limitante alla formazione buco nero con la tendenza a favorire invece la formazione del disco di accrescimento. In base alle conoscenze attuali, sembra esserci una lacuna nella distribuzione statistica delle masse dei buchi neri. Si conoscono, infatti, buchi neri generati dal collasso di una stella che hanno masse fino a 33 volte quella solare; mentre il valore minimo per un buco supermassiccio è dell'ordine delle centinaia di migliaia di masse solari: pertanto sembra che ci sia una carenza di buchi neri di massa intermedia. Questa lacuna sembra suggerire un processo di formazione differente, sebbene alcuni autori ritengano che le sorgenti ultraluminose a raggi X (o ULX, UltraLuminous X-ray source) potrebbero corrispondere a questi oggetti di massa intermedia. Si pensa che molte galassie, se non tutte, ospitino un buco nero supermassiccio nel loro centro. Le misure doppler della velocità della materia, sia stellare sia gassosa, presente al centro delle galassie vicine hanno rivelato moti di rotazione molto veloci, possibili solo con una grande concentrazione di materia al centro. Al momento, l'unico oggetto conosciuto che può concentrare abbastanza materia in uno spazio così piccolo è un buco nero. Nelle galassie attive più lontane si sospetta che la larghezza delle linee spettrali sia correlata con la massa del buco nero centrale. Una spettacolare evidenza riguardante la presenza di uno di questi buchi neri di massa estremamente grande al centro della nostra galassia è stata recentemente ottenuta seguendo direttamente l'orbita ellittica di una stella, dal cui periodo si può misurare la massa del buco nero con ottima precisione. Questi buchi neri supermassicci posti al centro di molte galassie sono sospettati di essere il "motore" di galassie attive come le galassie di Seyfert e i quasar. Tuttavia questi buchi neri possono svolgere un ruolo rilevante nella dinamica dei sistemi galattici anche in molti altri casi, come mostra la recente scoperta della correlazione tra la massa del buco nero centrale e la dispersione di velocità delle stelle nel bulge di numerose galassie a spirale. Gli astronomi ritengono che anche la nostra Galassia contenga al suo centro un buco nero supermassiccio, in direzione della radiosorgente Sagittarius A*, a 26.000 anni luce dal sistema solare in quanto: La stella S2 segue un'orbita ellittica con un periodo di 15,56 ± 0,35 anni alla distanza media di 134,6 UA (17 ore-luce). Dal moto di S2 la massa dell'oggetto viene stimata in 4,1 milioni di masse solari. Il raggio dell'oggetto centrale deve ovviamente essere inferiore a 17 ore luce, altrimenti S2 entrerebbe in collisione o verrebbe lacerata dalle forze di marea. Misure recenti indicano che il raggio dell'oggetto non sia superiore a 6,25 ore luce, cioè all'incirca il raggio dell'orbita di Urano. Solo un buco nero ha la densità sufficiente per stivare 4,1 milioni di masse solari in un volume così piccolo. L'Istituto Max Planck di fisica extraterrestre e l'UCLA Galactic Center Group hanno fornito la più forte evidenza che Sagittarius A* sia la sede di un buco nero supermassiccio, basandosi sui dati dell'ESO e dei telescopi Keck. La massa calcolata risulta appunto di 4,1 milioni di masse solari, pari a circa 8,2 × 1036 kg. È ormai ritenuto molto probabile che al centro della maggior parte delle galassie si trovi un buco nero supermassiccio. La stretta correlazione tra la massa del buco nero e la dispersione delle velocità nel bulbo galattico, nota come relazione M-sigma, suggerisce che la formazione della galassia e del buco nero al suo centro siano tra loro collegate; anche se una spiegazione dettagliata della correlazione tra i due eventi non è ancora stata fornita. Si ritiene che il buco nero e la sua galassia ospitante si siano sviluppati assieme nel periodo compreso tra 300 e 800 milioni di anni dopo il Big Bang, passando attraverso la fase di quasar e le sue caratteristiche correlate, sebbene i modelli proposti differiscano sul fatto che sia stato il buco nero a innescare la formazione della galassia o viceversa; ma anche una formazione sequenziale dei due oggetti non è esclusa. La natura ancora sconosciuta della materia oscura è una variabile cruciale in tutti questi modelli. La vicina Galassia di Andromeda, sita a 2,5 milioni di anni luce da noi, ospita nel suo centro un buco nero avente una massa compresa tra 1,1 × 108 e 2,3 × 108 masse solari, ben superiore a quella del buco nero centrale della Via Lattea. Il maggior buco nero supermassiccio nelle nostre vicinanze sembra essere quello di M87, distante 53,5 milioni di anni luce, la cui massa è stimata in (6,4 ± 0,5) × 109 masse solari. Pare che alcune galassie, come la galassia 0402+379, abbiano al centro due buchi neri che interagiscono tra loro in modo da formare un sistema binario, che si ritiene sia il risultato della fusione di due galassie. In caso di collisione essi potrebbero dar luogo a forti onde gravitazionali. Il sistema binario in OJ 287 contiene uno tra i buchi neri più massicci conosciuti, con una massa stimata in 19 miliardi di masse solari. Un buco nero supermassiccio è stato recentemente scoperto nella galassia nana Henize 2-10, che è priva della prominenza centrale. Le precise implicazioni di questa scoperta sulla formazione dei buchi neri non sono ancora del tutto chiare, ma potrebbero indicare che essi si formino prima del bulbo. Il 28 marzo 2011 è stata osservata per la prima volta la lacerazione di una stella di dimensioni medie da parte di un supposto buco nero; o almeno questa è l'interpretazione più accreditata dell'improvvisa emissione di raggi X rilevata. 


Adesso andiamo a scoprire i segreti del buco nero al centro della Via Lattea...


Sagittarius A*

Sagittarius A* (abbreviato in Sgr A*) è una sorgente di onde radio molto compatta e luminosa, situata nel centro della Via Lattea, parte della grande struttura nota come Sagittarius A. Sgr A* è il punto in cui si trova un buco nero supermassiccio, componente caratteristico dei centri di molte galassie ellittiche e spirali. Sagittarius A* avrebbe una massa di circa 4 milioni di volte quella del Sole e, trovandosi nel centro della nostra galassia, costituirebbe il corpo celeste attorno a cui tutte le stelle della Via Lattea, compresa la nostra, compiono il loro moto di rivoluzione. Diversi gruppi di ricerca hanno ottenuto delle immagini di Sgr A* nella lunghezza d'onda delle onde radio utilizzando il Very Long Baseline Interferometry (VLBI); le immagini ottenute hanno rilevato un disco di accrescimento e un getto relativistico che farebbe pensare ad un buco nero supermassiccio. Le misure hanno una risoluzione di un diametro angolare pari a 37 microsecondi d'arco con un errore stimato in +16 e −10. A 26000 al di distanza equivale ad un diametro di 44 milioni di km. Come termine di paragone, la Terra si trova a 150 milioni di km dal Sole, mentre il pianeta Mercurio è a 46 milioni di km dal Sole nel punto più vicino dell'orbita. Sgr A* avrebbe un raggio di 13 milioni di km. Sgr A* ha una massa stimata in circa 4,1 milioni di masse solari; dato che questa massa è confinata in una sfera del diametro di 44 milioni di km, possiede una densità dieci volte più alta di quanto stimato in precedenza. Questa densità esclude l'ipotesi che si tratti di qualcosa di diverso da un buco nero poiché con altre concentrazioni l'oggetto sarebbe collassato o evaporato su una scala di tempo inferiore a quella dell'età della Via Lattea. Conoscendo questi dati, solo elevate deviazioni del comportamento della stessa gravità rispetto a quanto predetto dalla relatività generale potrebbero invalidare l'ipotesi che si tratti di un buco nero. Tuttavia ciò che si osserva non è un buco nero in senso stretto; l'energia radio e infrarossa osservata è emanata dal gas e dalle polveri riscaldate a milioni di kelvin mentre cadono nel buco nero. Si pensa che lo stesso buco nero emetta solo radiazione di Hawking a temperature trascurabili, dell'ordine di 1×10−14 K. Il 6 ottobre 2002 un gruppo di ricerca internazionale diretto da Rainer Schödel del Max Planck Institute for Extraterrestrial Physics pubblicò gli esiti dell'osservazione per 10 anni del moto della stella S2 nei pressi di Sgr A*: Sgr A* è un oggetto eccezionalmente compatto.[5] Esaminando l'orbita di S2, determinarono che la massa di Sgr A* era compresa entro (2,6±0,2)×106 M⊙, confinata in un volume dal raggio non superiore alle 17 ore luce (120 au). Osservazioni successive determinarono una massa di 3,7 milioni di masse solari in un volume dal raggio compreso entro 6,25 ore luce (45 UA), o 6,7 miliardi di km. Nel novembre 2004 un gruppo di astronomi annunciò la scoperta di GCIRS 13E, primo buco nero di massa intermedia confermato della nostra Galassia, orbitante a 3 anni luce da Sgr A*; questo buco nero di 1300 M⊙ si trova all'interno di un ammasso di sette stelle. Queste osservazioni supportano la teoria secondo cui i buchi neri supermassicci crescono assorbendo materia dalle stelle vicine e da buchi neri di massa inferiore. Recenti osservazioni dirette con la rete di radiotelescopi Event Horizon Telescope hanno evidenziato un campo magnetico associato al buco nero Sgr A*, campo che alimenta il buco nero stesso. L'attività di Sagittarius A*, al centro della nostra galassia, lo rende una sorta di "motore" che, assimilando la materia di ciò che passa nelle sue vicinanze, produce energia sotto forma di intense radiazioni. Poiché le grandi quantità di gas e polveri intorno a Sagittarius A*, e più in generale nei centri galattici, genererebbero stelle massicce che alla fine del proprio ciclo vitale evolverebbero in buchi neri, un gruppo di ricerca ha lavorato su queste premesse utilizzando i dati del telescopio spaziale a raggi X Chandra. Il gruppo ha individuato le firme a raggi X di dodici stelle binarie inattive a bassa emissione, entro tre anni luce da Sgr A*. La posizione e la distribuzione di questi sistemi stellari hanno consentito di ipotizzare la presenza di centinaia di buchi neri silenti entro pochi anni luce da Sgr A*. Qualcosa di insolito fu rilevato già nel 2002, ma fu nel 2012 che fu annunciata la scoperta, pubblicata su Nature, di una nube di gas e polveri che si avvicina velocemente al buco nero. La nube è stata denominata G2 e ha una massa circa tre volte quella terrestre; dai calcoli della sua orbita fu previsto che nella seconda metà del 2013 essa si sarebbe avvicinata a poco più di 3000 volte il raggio dell'orizzonte degli eventi del buco nero, equivalenti a circa 260 au. Nonostante non sia in rotta di collisione, l'avvicinamento della nube al buco nero potrebbe provocare una notevole emissione di raggi X e anche un brillamento gigante nel punto di massimo avvicinamento, se la nube dovesse frantumarsi per le forze di marea presenti e della materia dovesse cadere nel pozzo gravitazionale del buco nero supermassiccio. L'origine della nube è incerta; per alcuni scienziati potrebbe essere l'atmosfera esterna persa da una stella massiccia o materia che si stava condensando in un pianeta, la cui formazione però non è avvenuta a causa dell'ambiente troppo caldo. L'evento avrà una durata inferiore a una decina d'anni, un tempo breve su scala astronomica, e sarà osservato dai più grandi radiotelescopi da terra e dai telescopi spaziali in orbita, quali il Chandra, l'XMM-Newton, l'EVLA, l'INTEGRAL, lo Swift e il Fermi. Simulazioni al computer suggeriscono che la nube non sopravviverebbe all'incontro e che verrebbe disgregata in più parti, alcune della quali cadrebbero nel disco di accrescimento e sarebbero inghiottite dal buco nero; ciò che resta cambierebbe forma e orbita. Nonostante il progressivo avvicinamento al buco nero supermassiccio, G2 si dimostra ancora intatta. Uno studio in follow-up di precedenti osservazioni di Hubble e pubblicato a gennaio 2017 ha tracciato il movimento dei gas che, in seguito all'espulsione dal buco nero, formano immense strutture (bolle di Fermi) e ha consentito di stimare l'età di queste bolle intorno ai 2 milioni di anni. Gli astronomi non sono riusciti finora a osservare Sgr A* nello spettro ottico, a causa dell'enorme estinzione tra la sorgente e la Terra, calcolata nell'ordine delle 25 magnitudini. Numerosi gruppi di ricercatori hanno tentato di riprendere Sgr A* nello spettro delle frequenze radio usando l'interferometria a base lunghissima (VLBI). Attualmente, le osservazioni con la maggiore risoluzione, fatte alla lunghezza d'onda di 1,3 mm, indicano un diametro angolare della sorgente di 37 µas (microarcosecondi, o milionesimi di secondo d'arco). Alla distanza di 26.000 anni luce, ciò corrisponde a un diametro lineare di 44 milioni di chilometri. Per confronto, la Terra si trova a 150 milioni di chilometri dal Sole e Mercurio, al perielio, a 46 milioni di chilometri. Il moto proprio di Sgr A* è approssimativamente di −2,70 mas l'anno per l'ascensione retta e −5,6 mas l'anno per la declinazione. Se la posizione apparente di Sgr A* corrispondesse esattamente a quella del buco nero, sarebbe possibile vederlo ingrandito al di là delle sue dimensioni reali, in virtù di un effetto di lente gravitazionale. In base alla relatività generale, si avrebbe una dimensione minima osservata pari ad almeno 5,2 volte il raggio di Schwarzschild del buco nero, che, per una massa di 4 milioni di masse solari, equivale approssimativamente a una dimensione minima osservabile di 52 µas. È una misura ben maggiore dei 37 µas di risoluzione massima a cui si è giunti con l'interferometria. Ciò suggerisce che le radioemissioni di Sgr A* non siano centrate sul buco nero, ma provengano da un punto brillante nella regione intorno al buco nero nei pressi dell'orizzonte degli eventi, forse un punto situato sul disco di accrescimento oppure un getto relativistico di materiale espulso dal disco. La massa di Sgr A* è stata stimata in due modi differenti.

  • Due gruppi - in Germania e negli Stati Uniti - hanno monitorato le orbite di singole stelle molto vicine al buco nero e hanno usato le leggi di Keplero per inferire la massa racchiusa. Il gruppo tedesco ha trovato una massa di 4,31 ± 0,38 milioni di masse solari, mentre il gruppo americano ha trovato 4,1 ± 0,6 milioni di masse solari. Dato che questa massa è confinata all'interno di una sfera di 44 milioni di chilometri di diametro, ciò conduce a una densità dieci volte maggiore rispetto alle stime precedenti.
  • Più di recente, la misurazione del moto proprio di un campione di diverse migliaia di stelle in un raggio di circa 1 parsec dal buco nero ha permesso di stimare sia la massa del buco nero sia, anche, la massa distribuita in tale regione. È stato trovato che la massa del buco nero è coerente con i valori misurati da singole orbite; la massa distribuita è risultata essere di 1,0 ± 0,5 milioni di masse solari. Si presume che tale massa appartenga a stelle di sequenza principale e residui compatti di stelle morte.

La massa e le dimensioni calcolate per Sgr A*, da un punto di vista strettamente teorico, possono essere spiegate anche in altri modi. Tuttavia, qualsiasi altra configurazione di massa collasserebbe in un singolo buco nero supermassiccio su una scala temporale di gran lunga più breve di quella della vita della Via Lattea. La massa comparativamente piccola di questo buco nero, insieme con la bassa luminosità delle righe di emissione nelle onde radio e nell'infrarosso, implica che la Via Lattea non è una galassia di Seyfert. In conclusione, ciò che vediamo nelle onde radio non è, come già detto, il buco nero in se stesso, ma le osservazioni risultano coerenti solo se esiste effettivamente un buco nero nei pressi di Sgr A*. Se questo è il caso, come è lecito ritenere in base ai dati disponibili, l'energia osservata nelle onde radio e nell'infrarosso emana da gas e polveri riscaldati fino a milioni di gradi mentre precipitano nel buco nero. Benché esistano altre possibilità per spiegare l'energia emanata dai gas, per esempio la pressione di radiazione e l'interazione con altre correnti di gas, la spiegazione più semplice rimane l'interazione con una massiccia sorgente di gravità. Il buco nero in se stesso si pensa che emetta solo radiazione di Hawking a temperature nell'ordine dei 10⁻¹⁴ gradi Kelvin. Da tempi astronomi e ricercatori ipotizzano che al centro della Via Lattea sia presente un buco nero supermassiccio, al quale peraltro è già stato dato un nome, Sagittarius A. Un oggetto che, secondo le ipotesi più condivise in ambito scientifico, presenta una forza di gravità tale da trattenere la luce stessa. Partendo da questo presupposto un buco nero risulta per definizione non osservabile. si cerca quindi di operare con un approccio diverso, finalizzato all'osservazione dei suoi effetti sugli oggetti celesti posti nelle vicinanze. Diversi team internazionali operano attualmente in tal senso, ad esempio abbiamo recentemente visto come i ricercatori dell'EHT stiano cercando di creare una ricostruzione fotografica dell'orizzonte degli eventi di Sagittarius A. Tuttavia, una scoperta definibile a tutti gli effetti "sensazionale" potrebbe aver creato un precedente unico, sembra che la prima vera prova della sua esistenza sia finalmente disponibile.


Crea il tuo sito web gratis! Questo sito è stato creato con Webnode. Crea il tuo sito gratuito oggi stesso! Inizia