Il sistema binario di Sirio

Le stelle sono oggetti affascinanti: illuminano un cosmo vastissimo, che altrimenti sarebbe oscuro e vuoto. Dalla Terra, le stelle sembrano minuscoli punti luminosi simili tra loro. In realtà, sono oggetti giganteschi, di incommensurabile potenza, completamente diversi tra loro per massa, magnitudine e temperatura. In questo nuovissimo articolo di Eagle sera, scopriremo i misteri che si celano dietro il sistema di Sirio (nome latino: Sirius). Seguici, per saperne di più!


Cos'è un sistema binario?

Si definisce stella binaria un sistema stellare formato da due stelle che orbitano intorno al loro comune centro di massa; la stella più luminosa viene chiamata primaria, mentre l'altra viene chiamata compagna o secondaria. Le osservazioni compiute sin dall'Ottocento fanno pensare che siano molte le stelle a far parte di sistemi binari o di sistemi multipli, composti da più di due stelle. Il termine stella doppia è a volte utilizzato quale sinonimo di stella binaria, ma talvolta indica sia le stelle binarie fisicamente legate fra loro sia le binarie ottiche, ovvero coppie di stelle che appaiono vicine se osservate dalla Terra, ma che non hanno alcun legame gravitazionale fra loro. Si può verificare se una stella doppia è ottica qualora le due componenti abbiano valori di moto proprio o velocità radiale sufficientemente distinti, oppure quando le misurazioni della parallasse rivelano che esse hanno distanze differenti dalla Terra. Esistono però molte stelle doppie per le quali non è stato ancora possibile determinare se si tratti di binarie fisicamente legate oppure solo di doppie apparenti. Spesso le due componenti che formano una stella binaria sono visibili a occhio nudo o tramite l'ausilio di strumenti osservativi; una binaria di questo tipo viene chiamata visuale. Molte binarie visuali hanno lunghi periodi orbitali, dell'ordine di centinaia o migliaia di anni, e perciò le loro orbite sono note solo con incertezza. Altre binarie invece presentano un'orbita così stretta che non sono risolvibili neppure con le strumentazioni ottiche, ma sono riconoscibili come tali soltanto tramite tecniche indirette quali la spettroscopia (binarie spettroscopiche) o l'astrometria (binarie astrometriche). Se una binaria presenta un piano orbitale parallelo alla linea di vista della Terra, le sue componenti si eclisseranno a vicenda; queste binarie vengono chiamate a eclisse o, quando sono riconoscibili dai cambiamenti di luminosità prodotti dalle eclissi, binarie fotometriche. Se le componenti di un sistema binario sono abbastanza vicine (binarie strette), esse possono distorcere reciprocamente le loro atmosfere e, in alcuni casi, possono pure scambiarsi materiale così da modificare la loro normale evoluzione. Una varietà di binarie strette sono le cosiddette binarie a contatto, le quali sono talmente vicine tra loro da condividere una considerevole percentuale di materia. Le binarie possono originare anche delle nebulose planetarie e sono all'origine delle variabili cataclismiche, in particolare delle novae e delle supernovae di tipo Ia. Le stelle binarie rivestono inoltre un importante ruolo in astrofisica, in quanto il calcolo delle loro orbite permette di stimare le masse delle due componenti e, indirettamente, altri parametri come il raggio e la densità. Poiché la distanza che separa le due componenti di una stella binaria è sempre molto inferiore alla distanza della coppia dalla Terra, sono molto poche le stelle binarie che possono essere osservate a occhio nudo: esse, al contrario, ci appaiono come un'unica stella in quanto sono troppo vicine per essere separate dall'occhio umano. Una notevole eccezione è la coppia Mizar-Alcor, appartenente alla costellazione dell'Orsa Maggiore, che appare separata da 11,8 minuti d'arco e che può essere distinta a occhio nudo se si ha una buona vista. Le due stelle sono fisicamente distanti fra loro circa un quarto di anno luce e distano da noi circa 80 anni luce. Tuttavia, nella maggior parte dei casi per separare le due componenti di una stella binaria è necessario l'ausilio di una strumentazione: infatti, quanto minore è la distanza fra le due componenti e quanto maggiore è la distanza della coppia dalla Terra, tanto maggiore deve essere il potere risolvente angolare dello strumento necessario a separarle. La luminosità delle stelle è un altro fattore importante: le stelle brillanti, a causa del loro riverbero, sono infatti più difficili da separare rispetto a quelle più deboli.[16] Alcune stelle binarie presentano una separazione sufficientemente piccola e sono sufficientemente distanti dalla Terra da non poter essere risolte neppure dai telescopi più potenti; la costruzione di telescopi sempre più grandi e potenti permette comunque l'osservazione diretta di un crescente numero di stelle binarie. Uno degli aspetti più suggestivi dell'osservazione delle binarie è il contrasto fra colori fra le loro componenti che alcune di esse mostrano; una delle binarie in questo senso più spettacolari è Albireo, una stella di terza magnitudine appartenente alla costellazione del Cigno. Essa è una delle binarie visuali più facili da osservare a causa della larga separazione fra le due componenti e della loro differenza di colore: la stella più luminosa della coppia è di colore azzurro, mentre la compagna è di colore arancione; la componente più luminosa è in realtà essa stessa una binaria stretta.[17] Tuttavia i colori che gli osservatori riportano sono spesso molto discordanti fra loro; queste discordanze possono essere dovute a una pluralità di fattori, quali il tipo di telescopio utilizzato, le condizioni atmosferiche, la differenza di luminosità fra le componenti della coppia, gli effetti di colore contrastante e la percezione dei colori da parte dell'osservatore. In campo amatoriale i telescopi più piccoli sono avvantaggiati rispetto a quelli più grandi in quanto i piccoli strumenti forniscono un livello di luce ottimale per distinguere i colori delle binarie più brillanti: troppa illuminazione (così come troppo poca) rende la percezione dei colori difficile e incerta. Quando si osserva una stella doppia, si cerca innanzitutto di accertare se si tratti di una vera binaria o solo di una coppia ottica; uno dei modi più semplici per farlo è osservare il moto orbitale delle due stelle intorno al loro comune centro di massa. Questo metodo può essere utilizzato se il periodo orbitale non è eccessivamente lungo, in modo tale che il moto relativo delle due stelle possa essere osservato nel tempo. Si procede in questo caso misurando l'angolo di posizione della stella meno luminosa rispetto a quella più brillante e la loro distanza angolare e queste misurazioni vengono ripetute nel tempo. Dopo un sufficiente numero di osservazioni, esse sono raccolte in un sistema di coordinate polari, dove la stella più luminosa occupa l'origine e dove viene disegnata l'ellisse più probabile passante per i punti in cui la meno brillante è stata osservata; in realtà questa ellisse non coincide con l'orbita reale della secondaria, ma con la sua proiezione sul piano del cielo. A partire da tale ellisse apparente è comunque possibile calcolare i parametri dell'orbita, dove il semiasse maggiore è espresso in unità angolari, a meno che la parallasse, e quindi la distanza, del sistema non sia conosciuta. Il calcolo dei parametri orbitali è di fondamentale importanza in astronomia, dato che costituisce l'unico metodo diretto per la valutazione della massa delle stelle. Quando il periodo orbitale è troppo lungo per poter apprezzare cambiamenti nella posizione delle due stelle, si ricorre alla misurazione delle distanze, delle velocità radiali e del moto proprio delle stelle della coppia: se queste misurazioni danno valori uguali o simili, allora la coppia è probabilmente legata da vincoli di gravità. Infatti se due stelle sono fisicamente legate, allora si troveranno più o meno alla stessa distanza da noi e saranno accomunate dallo stesso moto proprio nel cielo. Il termine binaria fu usato per la prima volta per designare una coppia di stelle dall'astronomo anglo-prussiano William Herschel, il quale nel 1802 scriveva: «Se, al contrario, due stelle dovessero essere veramente posizionate l'una vicino all'altra e nello stesso tempo essere abbastanza distanti dalle altre per non essere influenzate dalla loro attrazione, esse comporrebbero un sistema separato tenuto unito dal legame della loro mutua attrazione gravitazionale. Questo sistema dovrebbe essere chiamato una vera stella doppia; e ogni coppia di stelle che sono così mutualmente connesse, forma il sistema binario siderale che ora vogliamo considerare.» Nella moderna terminologia astronomica si definisce dunque stella binaria una coppia di stelle che orbitano intorno a un comune centro di massa; le stelle binarie che possono essere risolte tramite un telescopio o tramite un interferometro vengono chiamate binarie visuali. Per la maggior parte delle binarie visuali conosciute, non è stata ancora osservata un'intera rivoluzione, ma solo una parte della curva dell'orbita, a causa del lungo periodo orbitale che un'ampia orbita comporta. Il termine più generale stella doppia è utilizzato per le coppie di stelle che appaiono vicine nel cielo. Le stelle doppie possono essere o stelle binarie o semplicemente due stelle che appaiono vicine, ma che possiedono in verità distanze molto differenti dal Sole. In quest'ultimo caso vengono chiamate binarie ottiche; tuttavia questa distinzione fra i significati di stella binaria e stella doppia viene di solito operata fra i corrispondenti termini inglesi (binary star e double star), mentre nelle altre lingue si tende spesso a considerarli sinonimi. Dall'invenzione del telescopio è stato individuato un gran numero di stelle doppie. La prima a essere individuata come tale fu Mizar, nel Grande Carro dell'Orsa Maggiore: la sua natura di stella doppia fu scoperta da Giovanni Battista Riccioli nel 1650, anche se è probabile che tale scoperta sia stata effettuata in precedenza da Benedetto Castelli e Galileo. Nel 1656 l'olandese Christiaan Huygens vide la stella θ Orionis, situata all'interno della celebre Nebulosa di Orione, risolta in tre componenti; nel 1664 l'inglese Robert Hooke scoprì la duplicità di γ Arietis, mentre nel 1678 l'italiano Giovanni Cassini, astronomo a Parigi presso la corte di Luigi XIV, rilevò la duplicità di β Scorpii e Castore (α Geminorum); Acrux, nella costellazione della Croce del Sud, fu riconosciuta quale stella doppia da padre Fontenay nel 1685. Inizialmente molte delle coppie furono interpretate come sistemi planetari, costituiti da un pianeta orbitante intorno a una stella centrale; presto però ci si rese conto che questa ipotesi non poteva essere corretta in quanto non veniva percepito alcun moto di rivoluzione del presunto pianeta intorno alla stella. Nella prima metà del Settecento alcuni astronomi ritenevano che le stelle doppie apparissero vicine solo per ragioni di prospettiva. Nel 1767 John Michell fu il primo a suggerire che le stesse doppie potessero essere fisicamente legate fra loro, basandosi sul fatto che la probabilità che due stelle potessero apparire casualmente vicine fosse molto bassa. William Herschel cominciò a osservare le stelle doppie nel 1779 e ne compilò un catalogo contenente circa 700 astri; nel 1803 egli aveva osservato la posizione relativa di molte stelle doppie nel corso dei precedenti 25 anni e poté concludere che doveva trattarsi di sistemi gravitativamente legati. Fu però necessario attendere il 1827 perché per la prima volta venisse determinata l'orbita di una stella binaria, quando Félix Savary calcolò quella di ξ Ursae Majoris; da allora molte stelle doppie sono state catalogate e studiate. Il Washington Double Star Catalog, un database di doppie visuali compilato dallo United States Naval Observatory, raccoglie più di 100.000 stelle doppie e comprende sia stelle doppie ottiche che stelle binarie. Sono conosciute le orbite di solo alcune migliaia di queste stelle e per la maggior parte di esse non è neppure ancora certo se si tratti di vere binarie o solo di vicinanze prospettiche. Per classificare le stelle binarie ci si serve di due metodi, basati sul sistema mediante cui la duplicità della stella viene accertata oppure sulla distanza che separa le due componenti. Le stelle binarie sono classificate in quattro diversi tipi a seconda del modo in cui la loro natura di binarie viene accertata:

  • binarie visuali, tramite l'osservazione diretta;
  • binarie spettroscopiche, tramite cambiamenti periodici nelle linee spettrali;
  • binarie fotometriche, tramite i cambiamenti nella luminosità causati dalla eclissi reciproca delle due componenti;
  • binarie astrometriche, tramite la misurazione dei cambiamenti di posizione di una stella causati da un'invisibile compagna.

Una binaria può appartenere a più di una di queste classi: per esempio, molte binarie spettroscopiche sono anche binarie fotometriche. Una binaria visuale è una stella binaria le cui componenti sono sufficientemente separate perché si possa osservarle con il telescopio o persino con un potente binocolo. La stella più luminosa della coppia è chiamata primaria, mentre la più debole secondaria; se le due stelle hanno luminosità simili, la designazione operata dallo scopritore viene di solito mantenuta. Una binaria visuale interessante, risolvibile solo tramite telescopi, è 61 Cygni, le cui componenti, 61 Cygni A e 61 Cygni B, sono due stelle arancioni di sequenza principale: essa è conosciuta per il suo grande moto proprio e per essere stata una delle prime stelle di cui sia stata misurata con accuratezza la distanza dalla Terra. Talvolta la prova che una stella sia binaria proviene esclusivamente dall'effetto Doppler che caratterizza la radiazione emessa dalla stella. In questi casi, le linee dello spettro di entrambe le stelle della coppia prima si spostano verso il blu, poi verso il rosso, in ossequio al loro moto orbitale che le porta dapprima ad allontanarsi e quindi ad avvicinarsi a noi. Il periodo dello spostamento coincide con quello orbitale.[38] In questi sistemi, la separazione fra le due stelle è solitamente molto piccola, sicché le loro velocità orbitali sono elevate e, a meno che il piano orbitale non sia perpendicolare alla linea di vista, le velocità orbitali avranno componenti nella direzione della linea di vista e la velocità radiale subirà periodiche variazioni. Poiché la velocità radiale può essere misurata tramite uno spettrometro, misurando l'effetto Doppler, le binarie scoperte con questo metodo vengono chiamate spettroscopiche; molte di queste sono talmente vicine da non poter essere risolte neppure dai telescopi più potenti. In alcune binarie spettroscopiche sono visibili le linee spettrali di entrambe le stelle: esse sono chiamate binarie spettroscopiche a doppia linea (in inglese double-lined spectroscopic binaries, abbreviato con "SB2"). In altri sistemi è invece possibile osservare lo spettro di una sola delle due stelle e il movimento delle linee spettrali alternativamente verso il rosso e verso il blu; questi sistemi sono conosciuti come binarie spettroscopiche a singola linea (in inglese single-lined spectroscopic binaries, abbreviato con "SB1"). L'orbita di una binaria spettroscopica è determinata effettuando una lunga serie di osservazioni della velocità radiale di una o di entrambe le componenti del sistema; viene poi tracciato un diagramma che riporta la variazione delle velocità radiali nel tempo e viene determinata la curva periodica di variazione. Se l'orbita è circolare allora ne risulterà una sinusoide; se l'orbita è ellittica, la forma della curva dipenderà dall'eccentricità dell'ellisse e dalla posizione del piano orbitale rispetto alla linea di vista. Non è possibile determinare contemporaneamente il semiasse maggiore a e l'inclinazione orbitale i. Tuttavia è possibile determinare direttamente in unità lineari (ad esempio in chilometri) il prodotto del semiasse maggiore con il seno dell'inclinazione del piano orbitale (a × sin i): se il valore di a o di i può essere determinato direttamente tramite altri mezzi, come nel caso delle binarie a eclissi, può essere ottenuta una soluzione completa dell'orbita. Le binarie sia visuali che spettroscopiche sono rare. Le binarie visuali hanno componenti molto separate, con periodi della durata di decenni o secoli: le velocità radiali sono troppo piccole per essere misurate dallo spettroscopio; al contrario, le binarie spettroscopiche hanno separazioni troppo piccole perché le due componenti possano essere risolte tramite un telescopio. Le binarie che sono sia visuali che spettroscopiche sono di solito relativamente vicine alla Terra e costituiscono una preziosa fonte di informazioni. Una binaria a eclisse è una stella binaria il cui piano orbitale è pressoché parallelo alla linea di vista dell'osservatore, sicché le due componenti si eclissano a vicenda. Nel caso in cui la binaria a eclisse sia anche spettroscopica e sia conosciuta la parallasse, lo studio delle caratteristiche delle due stelle risulta particolarmente facilitato. Con la costruzione di telescopi ad ampio diametro, come il Very Large Telescope, è divenuto possibile misurare con accuratezza i parametri delle binarie a eclissi, rendendole utilizzabili quali candele standard nella misura delle distanze galattiche: infatti, esse sono state utilizzate per misurare le distanze delle Nubi di Magellano, della galassia di Andromeda e della galassia del Triangolo. Il livello di accuratezza di queste misure è del 5%. Le binarie a eclissi sono variabili non perché la radiazione delle due componenti individuali cambi nel tempo, ma a causa delle reciproche eclissi. La curva di luce di una binaria a eclissi è caratterizzata da periodi in cui la radiazione è praticamente costante, alternati a periodi in cui si ha una caduta di intensità. Se una delle stelle è più grande dell'altra, la secondaria sarà oscurata mediante un'eclissi totale, mentre la primaria mediante un'eclissi anulare. Il periodo orbitale di una binaria a eclissi può essere determinato mediante lo studio della curva di luce, mentre la grandezza relativa delle due stelle può essere determinata in rapporto al semiasse maggiore dell'orbita, osservando quanto velocemente la luminosità del sistema si modifica nel momento in cui il disco della stella più vicina copre quello della stella più distante; se il sistema è anche una binaria spettroscopica, i parametri orbitali possono essere facilmente ricavati, così come le masse delle due componenti. Conoscendo sia il raggio che la massa è possibile ricavare anche la densità delle due stelle. L'esempio più noto di binaria a eclisse è Algol (β Persei). Un altro esempio peculiare è ε Aurigae: la componente visibile è una supergigante gialla appartenente alla classe spettrale F0, mentre l'altra componente, responsabile dell'eclissi, non è visibile, ma si suppone sia una stella di classe B5. Un ulteriore esempio è costituito da β Lyrae, una binaria semidistaccata, appartenente alla costellazione della Lira. Alcune binarie a eclissi si segnalano per la loro esoticità: SS Lacertae era un tempo una binaria a eclissi, ma ha cessato di esserlo intorno alla metà del Novecento; V907 Scorpii è una binaria a eclissi che alterna periodi di eclissi ad altri di assenza di eclissi; infine BG Geminorum è una binaria a eclissi che si crede essere composta da una stella di classe K0 che orbita intorno a un buco nero. Gli astronomi osservano spesso stelle relativamente vicine a noi che manifestano oscillazioni nel loro moto proprio. Queste oscillazioni sono determinate dal moto orbitale di una delle componenti di un sistema binario avente una compagna così debole da risultare invisibile (come nel caso di una stella degenere, un oggetto che emette poca o nessuna radiazione nel visibile) o essere resa tale dalla brillantezza della primaria. La stessa matematica utilizzata per calcolare i parametri delle binarie visuali può essere applicata per inferire la massa di una compagna invisibile. La posizione della stella visibile può essere misurata con accuratezza e si può scoprire che essa varia a causa dell'attrazione gravitazionale di una compagna non visibile: in particolare, in seguito a ripetute misurazioni della posizione della stella rispetto alle stelle più lontane, si può rilevare che la stella visibile segue nel cielo un percorso sinusoidale. Queste misurazioni sono possibili solo sulle stelle più vicine, poste entro un raggio di 10 parsec (~ 32 anni luce), che presentano un elevato moto proprio. La massa della compagna invisibile può essere dedotta dalla precisa misura astrometrica del movimento della stella visibile per un periodo di tempo sufficientemente lungo: infatti, le caratteristiche del sistema possono essere determinate utilizzando le leggi di Keplero. L'analisi astrometrica è utilizzata anche per scoprire la presenza di pianeti extrasolari; tuttavia, la scoperta di pianeti extrasolari richiede misure estremamente precise a causa della grande differenza di massa che esiste fra il pianeta e la stella intorno a cui orbita. Per effettuare misurazioni così precise è di solito necessario ricorrere a telescopi spaziali che non sono soggetti all'aberrazione prodotta dall'atmosfera terrestre. Una delle più famose binarie astrometriche è Sirio, la stella più brillante dell'intera volta celeste, visibile nella costellazione del Cane Maggiore. Nel 1844 l'astronomo tedesco Friedrich Bessel dedusse, studiandone i cambiamenti di moto proprio, che la stella potesse avere una compagna invisibile, che fu osservata per la prima volta il 31 gennaio 1862 Alvan Graham Clark e denominata Sirio B. Nel 1915 gli astronomi dell'Osservatorio di Monte Wilson, osservando lo spettro di Sirio B, dedussero che si trattava di una nana bianca. Nel 2005 usando il Telescopio Spaziale Hubble, gli astronomi hanno determinato che Sirio B possiede all'incirca il diametro della Terra, 12.000 km, con una densità molto elevata e una massa pari a circa il 98% di quella del Sole. Procione, l'ottava stella più brillante dell'intera volta celeste, appartenente alla costellazione del Cane Minore, presenta delle caratteristiche simili a quelle di Sirio: è infatti composta da una stella bianco-gialla di classe spettrale F5IV-V, chiamata Procione A, e da una debole nana bianca, chiamata Procione B. Un'altra classificazione delle stelle binarie è basata sulla distanza che separa le due stelle in relazione alla loro dimensione. Le binarie distaccate sono sistemi in cui ognuna delle due componenti è posta all'interno del suo lobo di Roche, cioè dell'area in cui la forza gravitazionale della stella è maggiore di quella della sua compagna; queste stelle non subiscono importanti influenze reciproche ed evolvono separatamente. La maggior parte delle binarie appartiene a questa classe. Le binarie semidistaccate sono sistemi in cui una delle due componenti riempie il proprio lobo di Roche, mentre l'altra no; in questo caso avviene un trasferimento di gas dalla stella che riempie il proprio lobo di Roche all'altra. Questo scambio di materia ha un'importanza fondamentale nell'evoluzione di questi sistemi; in molti casi, l'afflusso di gas forma un disco di accrescimento intorno alla stella che riceve materiale. Una binaria a contatto è un sistema in cui entrambe le componenti riempiono il proprio lobo di Roche e le parti più esterne delle atmosfere stellari formano un "inviluppo comune" che circonda entrambe le componenti del sistema. Poiché la frizione dell'inviluppo rallenta il moto orbitale, le stelle possono alla fine giungere a fondersi. I periodi orbitali delle binarie possono variare da meno di un'ora (per le stelle AM Canum Venaticorum) a pochi giorni (come per β Lyrae), a centinaia di migliaia di anni (come per Proxima Centauri intorno alla coppia α Centauri AB). Spesso le componenti di una binaria sono chiamate con le lettere A e B posposte alla designazione del sistema: A denota la primaria, B la secondaria, mentre la coppia nel suo complesso può esser designata col suffisso AB (ad esempio, la stella binaria α Centauri AB è costituita da α Centauri A e α Centauri B). Le lettere successive (C, D ecc.) possono essere utilizzate per designare ulteriori eventuali componenti di un sistema composto da più elementi stellari. Nel caso di binarie aventi una designazione di Bayer le cui componenti sono molto separate, è possibile che i membri della coppia siano designati tramite numeri in apice; un esempio è ζ Reticuli, le cui componenti sono ζ1 e ζ2 Reticuli. Un'altra designazione per le stelle doppie consiste nelle iniziali dello scopritore seguite da un numero di indice: ad esempio, poiché fu Padre Richaud nel 1689 a scoprire la natura binaria di α Centauri, questa stella è designata anche come RHD 1. I codici degli scopritori possono essere consultati presso il Washington Double Star Catalog. Le componenti di una stella binaria possono essere designate come componente calda e componente fredda a seconda delle loro temperature superficiali. Se le due componenti appartengono alla sequenza principale, allora quella avente una massa maggiore sarà anche la più calda, oltre che la più luminosa, ma se almeno una delle due componenti è già uscita dalla sequenza principale, allora quale fra esse sia la più calda dipende dallo stadio di evoluzione delle due stelle.

  • Se la stella più massiccia ha raggiunto lo stadio di gigante o supergigante, allora in molti casi è la meno calda del sistema. Ad esempio, Antares (α Scorpii) è un sistema binario la cui componente più calda, una stella di classe spettrale B, è molto meno luminosa e meno massiccia della sua compagna, una supergigante rossa di classe spettrale M1,5; di conseguenza la stella più fredda è la principale e viene designata con la lettera A, mentre la stella più calda è designata tramite la lettera B. Un altro esempio è R Aquarii: essa possiede uno spettro che indica la presenza di due componenti, una più calda e una più fredda; la componente più fredda è una supergigante e la compagna una componente più piccola e calda; è stato inoltre rilevato un trasferimento di materia dalla supergigante alla più piccola e densa compagna.
  • Quando tuttavia la principale raggiunge lo stadio di nana bianca, allora ha buone probabilità di essere la componente più calda del sistema, se si tratta di una nana bianca di recente formazione, che non è ancora andata incontro al lungo processo di raffreddamento. Per esempio, le novae simbiotiche sono sistemi stellari composti da una gigante di tipo K o M e una nana bianca; sebbene meno luminosa della compagna, la nana bianca è ben più calda di essa e quindi viene chiamata compagna calda. Altri esempi di sistemi costituiti da una nana bianca più calda della sua compagna sono alcune binarie a eclissi individuate dalla missione Kepler della NASA: KOI-74b è una nana bianca, avente una temperatura superficiale di 12.000 K che forma un sistema binario con KOI-74, una stella di classe A V, avente una temperatura di 9.400 K. KOI-81b è una nana bianca di 13.000 K compagna di KOI-81, una stella di classe B V di 10.000 K.

Anche se è possibile che alcuni sistemi (in particolare le binarie di lungo periodo) possano essersi formati dalla cattura gravitazionale reciproca di due o più stelle singole nate indipendentemente, tuttavia, data la bassissima probabilità di un simile evento (sarebbero comunque necessari almeno tre oggetti anche per la formazione di un sistema binario, dal momento che in base alla legge della conservazione dell'energia serve comunque un terzo elemento che assorba l'energia cinetica in eccesso affinché due stelle possano legarsi reciprocamente) e l'elevato numero di stelle binarie note, appare evidente che quello della cattura gravitazionale non sia il principale meccanismo attraverso cui ha origine un sistema stellare. Anzi, l'osservazione di sistemi costituiti da stelle pre-sequenza principale dà credito all'ipotesi secondo cui simili sistemi esistano già durante la fase di formazione stellare. Il modello che ne esplica in modo accettabile l'esistenza suggerisce che questi si siano creati dalla suddivisione di un singolo originario nucleo denso protostellare in due o più frammenti orbitanti attorno a un comune centro di massa, i quali successivamente collassano a formare le componenti del futuro sistema. Alcune evidenze ricavate dalle immagini riprese dal telescopio spaziale Spitzer mostrano che la formazione delle binarie strette determinerebbe un aspetto asimmetrico degli inviluppi molecolari da cui sottraggono il materiale necessario per la loro formazione. Nella maggior parte dei casi le componenti che formano un sistema binario non si disturbano a vicenda per tutta la durata della loro esistenza; se però esse fanno parte di un sistema stretto, allora possono andare incontro a maggiori interazioni reciproche, anche in modo particolarmente accentuato, soprattutto nelle fasi successive alla sequenza principale. Giunta al termine della sequenza principale, una stella sperimenta diverse fasi di instabilità, che la portano a espandersi; se essa si trova in un sistema binario stretto, può colmare ed eccedere il suo lobo di Roche, cioè i suoi strati più esterni subiscono un'attrazione gravitazionale dalla compagna maggiore di quanto sia quella esercitata dalla stella stessa. In questo modo si innesca un processo di trasferimento di massa da una stella all'altra; tale materia viene fatta propria dalla stella ricevente per impatto diretto o mediante un disco di accrescimento. Il punto matematico in cui avviene questo trasferimento si chiama punto di Lagrange. È abbastanza comune che il disco di accrescimento sia l'elemento più brillante del sistema e quindi, a volte, l'unico visibile. Se la fuoriuscita dal lobo di Roche della materia è troppo abbondante perché essa sia trasferita interamente alla compagna, è anche possibile che una parte di essa lasci del tutto il sistema dagli altri punti di Lagrange o tramite il vento stellare. Poiché l'evoluzione di una stella è determinata dalla massa, il processo di trasferimento altera la normale evoluzione che le due componenti avrebbero avuto se fossero state stelle singole. Lo studio del sistema di Algol ha portato alla formulazione del cosiddetto paradosso di Algol: sebbene le componenti di una stella binaria si formino contemporaneamente e sebbene le stelle più massicce si evolvano più rapidamente, in questo sistema la componente più massiccia, Algol A, è una stella di sequenza principale, mentre la sua compagna Algol B, meno massiccia, è una subgigante, dunque in uno stadio evolutivo più avanzato. Il paradosso è stato risolto ipotizzando un avvenuto scambio di materia: quando la stella originariamente più massiccia entra nello stadio di subgigante comincia a espandersi, riempiendo il proprio lobo di Roche; avviene quindi un trasferimento di gas all'altra stella, originariamente la meno massiccia, che permane ancora nella sequenza principale. Questo trasferimento ha come risultato che la stella inizialmente meno massiccia diviene quella più massiccia in virtù del materiale sottratto alla compagna. In alcune binarie simili ad Algol è possibile anche osservare il trasferimento di gas da una componente all'altra. Tipi particolari di binarie strette evolute sono costituite dalle binarie a raggi X e dalle variabili cataclismiche. Se le due componenti di un sistema binario hanno massa differente, una delle due raggiungerà lo stadio di stella degenere prima dell'altra: il sistema sarà quindi composto da una nana bianca o una stella di neutroni o un buco nero e da una compagna non ancora degenere. Se la compagna, conclusa la sequenza principale, si espande oltre il proprio lobo di Roche, da essa comincia a fuoriuscire gas che si accresce sulla stella degenere, formando un disco di accrescimento. A causa della viscosità della materia che costituisce il disco, l'energia di quest'ultimo viene dissipata in calore e il momento angolare orbitale del disco diminuisce all'avvicinarsi alla stella degenere. Per la progressiva diminuzione del momento angolare il gas procede in maniera spiraleggiante, compiendo orbite sempre più piccole. La regione in cui la velocità angolare del gas che compone il disco uguaglia quella della stella è detta strato limite di quantità di moto (boundary layer): in tale zona l'azione della viscosità diventa trascurabile. Il gas che si deposita sulla superficie della stella dissipa la sua residua energia in eccesso in parte tramite l'emissione di radiazione, in parte incrementando la velocità di rotazione della stella. Sull'origine della viscosità del disco sono state fatte diverse ipotesi, non verificate. L'innalzamento della temperatura del gas che viene trasferito produce un'emissione di radiazione nella banda dei raggi X; in questo modo si costituiscono le cosiddette binarie a raggi X o, più semplicemente, binarie X. Le binarie a raggi X si dividono in binarie X di piccola o grande massa, a seconda della mole della stella donatrice. Le binarie X di grande massa contengono una stella donatrice giovane, appartenente alle classi spettrali O o B, che trasferisce massa alla stella degenere tramite il suo vento stellare. Nella binarie X di piccola massa la stella donatrice è invece una stella evoluta di classe spettrale K o M che ha riempito il suo lobo di Roche e che trasferisce parte della propria massa alla stella degenere, per lo più una stella di neutroni o un buco nero. Probabilmente l'esempio più noto di binaria a raggi X è la binaria X a grande massa Cygnus X-1 (al lato): la massa della stella degenere di questo sistema è stimata essere 9 volte quella del Sole, molto al di sopra del limite di Tolman-Oppenheimer-Volkoff (il limite teorico massimo per la massa di una stella di neutroni), motivo per il quale si ritiene possa trattarsi di un buco nero. Si tratta del primo oggetto la cui identificazione con un buco nero è stata ampiamente accettata. Le variabili cataclismiche sono un tipo particolare di binarie strette formate da una nana bianca e da una stella evoluta, che ha colmato il proprio lobo di Roche. In questi sistemi la nana bianca accresce regolarmente i gas provenienti dall'atmosfera esterna della compagna, i quali vengono compressi dall'intensa forza gravitazionale della nana bianca, raggiungendo temperature altissime in corrispondenza della sua superficie. In quanto costituita da materia degenere, una nana bianca non può subire cambiamenti significativi nella propria temperatura, mentre l'idrogeno, proveniente dalla compagna, finisce col raggiungere temperature tali da innescare localmente fenomeni di fusione nucleare. Ciò conduce al rilascio di enormi quantitativi di energia che spazzano via i gas residui dalla superficie della nana bianca, producendo un "lampo" luminoso ma di breve durata che si estingue nell'arco di pochi giorni; questo fenomeno è chiamato nova. Nei casi in cui l'accumulo di massa conduce la nana bianca a superare la massa minima per riavviare nel suo nucleo le reazioni di fusione nucleare, valore di massa che è poco inferiore al limite di Chandrasekhar, accade che, trovandosi la materia all'interno del nucleo della stella in condizioni di densità estremamente elevata (la cosiddetta condizione di degenerazione), la stella reagisce in modo anomalo giungendo all'esplosione, fenomeno chiamato supernova di tipo Ia. L'esplosione di una supernova di tipo Ia ha effetti catastrofici sul sistema, in quanto può distrugge l'intera stella e può espellere la compagna, rendendola una stella fuggitiva. Un esempio di una simile supernova è SN 1572 (nell'immagine), che fu osservata da Tycho Brahe e che è stata fotografata nel 2008 dai telescopi spaziali Spitzer e Chandra. Una stella fuggitiva è una stella che possiede dei valori di moto proprio abnormemente più elevati di quelli di altre stelle poste nella medesima regione galattica. Valori abnormemente alti di moto proprio possono essere acquisiti, oltre che in seguito all'esplosione di una supernova di tipo Ia, anche nel caso in cui il legame gravitazionale che vincola due stelle in un sistema binario molto ampio venga rescisso a causa di una perturbazione esterna; in tal caso le due componenti continueranno a evolversi come stelle singole. Una possibile perturbazione è costituita dall'incontro ravvicinato fra due sistemi binari, che potrebbe risultare nell'espulsione ad alta velocità di alcune delle stelle che li costituivano. Le stelle binarie forniscono agli astronomi il migliore metodo per determinare le masse delle stelle. A causa dell'attrazione gravitazionale, le due stelle orbitano intorno al loro comune centro di massa. Dalla forma delle orbite di una binaria visuale o dalle variazioni spettrali di una binaria spettroscopica è possibile determinare la massa delle componenti. Di una binaria visuale di cui si conosca la forma dell'orbita e la parallasse è possibile ricavare la massa complessiva del sistema utilizzando le leggi di Keplero; nel caso di una binaria spettroscopica che non sia anche visuale o a eclissi, non è però possibile dedurre tutti i parametri del sistema, ma solo il prodotto delle masse per il seno dell'inclinazione orbitale. Nel caso invece che la binaria spettroscopica sia anche a eclissi, è possibile ricavare tutti i parametri delle stelle della coppia (massa, densità, raggio, luminosità e forma approssimativa); in questo modo è possibile stabilire quale relazione esista in generale fra la temperatura, il raggio e la massa di una stella. Conosciuta tale relazione e conosciuto il raggio e la temperatura di una stella singola non binaria, è possibile dedurre la sua massa. Poiché le stelle binarie sono comuni, esse sono particolarmente importanti nella comprensione dei processi che portano alla formazione delle stelle; in particolare, dal periodo e dalla massa di una binaria è possibile dedurre il momento angolare del sistema: poiché si tratta di una grandezza fisica conservativa, le binarie forniscono importanti informazioni riguardo alle condizioni in cui le stelle si formano. Nel corso di due secoli una grande quantità di ricerche ha portato a numerose conclusioni generali, per altro non ancora del tutto certe. Fino al 2006 si pensava che oltre il 50% di tutte le stelle fossero doppie, col 10% di queste appartenenti a sistemi con più di due stelle (triple, quadruple o più). Uno studio del 2006 ha però messo in dubbio questi assunti: si è infatti scoperto che la gran maggioranza delle stelle piccole, in particolare le nane rosse (che si stima rappresentino in numero l'80% delle stelle della galassia) sono singole; per stelle con massa simile al Sole lo studio dà una percentuale del 56% di stelle singole e del 44% di stelle doppie o multiple, mentre per stelle di massa elevata la percentuale di stelle doppie può superare il 70%. Nei dintorni del Sole (entro 17 anni luce) la percentuale di stelle doppie è del 28%; è da notare però che 50 delle 70 stelle più vicine al Sole sono nane rosse, che raramente formano sistemi multipli. Esiste una correlazione diretta fra il periodo orbitale e l'eccentricità dell'orbita: le binarie con minore periodo orbitale hanno solitamente orbite meno eccentriche. Le stelle binarie presentano separazioni molto differenti: ci sono coppie che sono praticamente a contatto fra loro e coppie talmente separate che il loro legame gravitazionale è deducibile solo dal loro comune moto proprio. Tuttavia la distribuzione lognormale dei periodi orbitali indica che la maggior parte dei sistemi ha un periodo di circa 100 anni, il che è un'ulteriore prova che le binarie si formano durante il processo di formazione stellare. Quando le componenti di un sistema binario hanno uguale magnitudine assoluta, allora di solito appartengono anche alla stessa classe spettrale; se invece hanno diversa luminosità, allora la più debole sarà la più blu, se la compagna è una gigante rossa, mentre sarà la più rossa se la compagna appartiene alla sequenza principale. Si stima che circa il 50-60% delle stelle binarie possano ospitare pianeti terrestri abitabili in orbite stabili. Alcune orbite sono impossibili per ragioni dinamiche (il pianeta sarebbe allontanato dalla sua orbita per essere o espulso dal sistema oppure trasferito a un'orbita più interna o esterna), mentre altre non potrebbero ospitare pianeti con biosfere a causa di differenze termiche troppo elevate nei differenti momenti dell'orbita. I pianeti che orbitano intorno a una sola delle componenti del sistema vengono chiamati di tipo S, mentre quelli che orbitano attorno a entrambe le stelle vengono chiamati di tipo P o circumbinari. Alcune simulazioni hanno dimostrato che la presenza di una compagna può avere l'effetto di aumentare il tasso di formazione planetaria nelle zone abitabili "rimescolando" il disco protoplanetario così da incrementare la velocità di crescita dei protopianeti. L'individuazione di pianeti nei sistemi binari presenta particolari difficoltà tecniche che ne hanno permesso finora la scoperta di un numero limitato. Alcuni esempi di binarie che ospitano pianeti includono la coppia nana bianca-pulsar PSR B1620-26, la coppia subgigante-nana rossa Alrai (γ Cephei), la coppia nana bianca-nana rossa NN Serpentis. Uno studio del 2009 di quattordici sistemi planetari noti ha permesso di scoprire che tre di essi orbitano intorno a stelle binarie: si tratta di tipo S che orbitano intorno alla principale del sistema, mentre la componente secondaria è debole al punto che non era stata rilevata in precedenza. La scoperta ha permesso di ricalcolare i parametri sia dei pianeti che delle stelle primarie. I sistemi aventi più di due stelle sono chiamati multipli, che, per motivi connessi alla stabilità orbitale, sono spesso organizzati in gruppi gerarchici di binarie coorbitanti. Algol, nella costellazione di Perseo, sebbene sia stato a lungo ritenuto binario, è il sistema stellare triplo più noto. Le due componenti visibili del sistema si eclissano l'una con l'altra producendo una variazione di luminosità osservata per la prima volta da Geminiano Montanari nel 1670. Il nome Algol significa stella del diavolo, dall'arabo al ghûl, e deriva probabilmente dal suo comportamento. Un altro sistema triplo visibile dalla Terra è α Centauri, la terza stella più luminosa di tutta la volta celeste; le due componenti principali del sistema, α Centauri A e α Centauri B, hanno una separazione minima, al periastro, di 11 UA, il che dovrebbe permettere l'esistenza di zone abitabili stabili intorno alle due stelle. Esistono sistemi multipli che possiedono più di tre componenti: Castore, la seconda stella più luminosa della costellazione dei Gemelli e una delle più luminose stelle della volta celeste, è in realtà un sistema sestuplo. Due componenti furono separate per la prima volta nel 1719; in seguito si scoprì che ognuna di queste componenti era a sua volta una binaria spettroscopica e che Castore possedeva un'ulteriore debole componente separata, a sua volta una binaria spettroscopica. Anche il sistema Mizar-Alcor, una binaria visuale osservabile nella costellazione dell'Orsa Maggiore, è in realtà sestuplo: quattro componenti appartengono a Mizar, le altre due a Alcor. 

Il sistema di Sirio

Sirio (IPA: /ˈsirjo/ α CMa / α Canis Majoris / Alfa Canis Majoris, conosciuta anche come Stella del Cane o Stella Canicola; in latino Sīrĭus, derivato dal nome greco della stella, Σείριος Séirios, che vuol dire "splendente", "ardente") è una stella bianca della costellazione del Cane Maggiore; è la stella più brillante del cielo notturno, con una magnitudine apparente pari a −1,46 e una magnitudine assoluta di +1,40. Vista dalla Terra possiede due volte la luminosità apparente di Canopo (α Carinae), la seconda stella più brillante del cielo; in una notte limpida, senza Luna e possibilmente senza i pianeti più luminosi, è persino in grado di proiettare a terra una leggerissima ombra degli oggetti. Sirio può essere osservata da tutte le regioni abitate della Terra e, nell'emisfero boreale, è uno dei vertici dell'asterismo del Triangolo invernale. La sua brillantezza in cielo è dovuta sia alla sua luminosità intrinseca, sia alla sua vicinanza al Sole; Sirio si trova infatti ad una distanza di 8,6 anni luce, ed è perciò una delle stelle più vicine alla Terra. È una stella di sequenza principale di tipo spettrale A1 Vm ed ha una massa circa 2,1 volte quella del Sole. La sua luminosità assoluta è pari a 25 volte quella del nostro Sole, ma Sirio è notevolmente meno luminosa di Rigel o della stessa Canopo, che appaiono meno luminose perché più lontane. Rispetto al Sole, inoltre, è molto più calda e la sua temperatura di 9400 K la fa apparire di un bianco intenso. Sirio è in realtà un sistema binario: infatti, attorno alla componente principale (detta per questo Sirio A) orbita una nana bianca chiamata Sirio B, che compie la propria rivoluzione attorno alla primaria ad una distanza compresa tra 8,1 e 31,5 au, con un periodo di circa 50 anni. Presso molte culture, la stella è stata spesso associata alla figura di un cane. Presso i Greci si riteneva che il suo scintillio al suo sorgere eliaco potesse danneggiare i raccolti, portare forte siccità o persino causare e diffondere epidemie di rabbia; il suo nome deriva infatti dal greco antico Σείριος (pronuncia Séirios), che significa splendente, ma anche ardente, bruciante. I Romani erano soliti sacrificare un cane assieme ad una pecora e del vino, allo scopo di prevenire gli effetti nefasti di questa stella. I giorni in cui queste cerimonie venivano consumate, all'inizio dell'estate, erano detti Giorni del Cane, e la stella Sirio Stella Canicula: fu così che il termine canicola diventò sinonimo di caldo afoso. Presso i Celti, invece, la levata eliaca di Sirio era considerata un fatto positivo e segnava l'inizio di Lugnasad, considerata la festa più importante. Sirio appare come una stella brillante di un marcato colore bianco-azzurro; sebbene si trovi nell'emisfero australe è sufficientemente vicina all'equatore celeste da risultare visibile anche a latitudini molto settentrionali, fino a ben oltre il circolo polare artico; tuttavia, da alcune città molto settentrionali, come San Pietroburgo, non si leva mai più di pochi gradi dall'orizzonte meridionale. Si individua con facilità a sud-est della brillante costellazione di Orione, sul bordo occidentale della scia chiara della Via Lattea. Può essere riconosciuta senza errori, in quanto si trova sul prolungamento a sud-est dell'allineamento delle tre stelle note come Cintura di Orione. Assieme a Betelgeuse (α Orionis) e Procione (α Canis Minoris) costituisce l'asterismo del Triangolo invernale. Dall'emisfero australe Sirio diventa circumpolare alle latitudini più meridionali dei 73° S; da alcune latitudini, Sirio può essere vista nei primi giorni di luglio sia subito dopo il tramonto che poco prima dell'alba. Questo succede perché Sirio dall'emisfero australe si presenta più alta sull'orizzonte rispetto al tratto dell'eclittica più vicino ad essa (che cade nei Gemelli); così, quando il Sole assume la stessa ascensione retta di Sirio, tramonta prima di quest'ultima, che resta invece visibile nel crepuscolo, mentre all'alba Sirio sorge poco prima che il chiarore dell'alba la nasconda alla vista. Con una magnitudine apparente di −1,47, Sirio è la stella più luminosa del cielo notturno, con un discreto margine sulle altre; tuttavia, non appare luminosa come la Luna, Venere o Giove. Talvolta anche Mercurio e Marte, a seconda della posizione nell'orbita, appaiono più luminosi. Sirio può essere osservata ad occhio nudo anche durante le ore diurne in alcune circostanze: il cielo dovrebbe essere particolarmente terso, mentre l'osservatore deve trovarsi ad alta quota, con Sirio quasi allo zenit e il Sole basso sull'orizzonte. Può inoltre essere scorta con facilità assieme ad altre stelle prima del tramonto (o dopo il sorgere) del Sole se ci si trova su un aereo che vola ad alta quota. Il moto orbitale del sistema binario di Sirio porta le due stelle ad una minima separazione angolare di 3 secondi d'arco e ad un massimo di 11 secondi d'arco. Durante la separazione minima, occorre un telescopio da almeno 300 mm di diametro per poter distinguere la nana bianca Sirio B dal chiarore diffuso della stella primaria. L'ultimo periastro avvenne nel 1994 e, dato che il periodo orbitale del sistema è di 50,09 anni, il prossimo avverrà intorno al 2044. Trovandosi alla distanza di 2,6 parsec (8,6 anni luce) dal sistema solare, il sistema di Sirio comprende due delle otto stelle più vicine al Sole ed è il quinto sistema stellare più vicino a noi. Questa vicinanza è la principale ragione della grande luminosità della stella, come per altre stelle vicine come α Centauri ed in forte contrasto con le distanti e molto più brillanti supergiganti come Canopo (α Carinae), Rigel (β Orionis) o Betelgeuse; tuttavia, è comunque 25 volte più luminosa della nostra stella in termini assoluti. La stella fisicamente più vicina a Sirio è Procione, che si trova ad appena 1,61 parsec (5,24 anni luce) da questa. La sonda spaziale Voyager 2, lanciata nel 1977 per studiare i quattro pianeti gioviani del sistema solare esterno, passerà a 4,3 anni luce da Sirio tra circa 296 000 anni. Sirio è riportata nei primissimi registri astronomici, conosciuta presso gli antichi egizi col nome di Sopdet; durante il Medio Regno, gli egizi basavano il loro calendario sul sorgere eliaco di Sirio, ossia il giorno in cui la stella diventava visibile all'alba poco prima che la luce del Sole la oscurasse in cielo, che all'epoca coincideva con il prossimo arrivo delle inondazioni annuali del Nilo e del solstizio, dopo circa 70 giorni in cui la stella non era stata visibile nei cieli. Il capodanno egizio cadeva in estate, nel giorno detto 1 Thoth, corrispondente all'odierno 29-30 agosto. Tra gli egizi il geroglifico spdt, per indicare questa stella (Sothis, nella traslitterazione greca) mostra una stella e un triangolo; nella mitologia egizia, Sothis era identificata con la grande dea Iside, che formava una trinità con il marito Osiride e il loro figlio Horus, mentre i 70 giorni di assenza della stella simboleggiava il passaggio di Iside attraverso il duat (l'oltretomba egizio). Settanta erano anche i giorni che i defunti trascorrevano nelle "case dell'imbalsamazione". Questo a giustificare il forte legame tra gli antichi egizi e le stelle. Da Sothis deriva il termine "ciclo sothiaco", ad indicare appunto il particolare periodo di "reset" orbitale della stella, di 1460 anni. Gli antichi Greci credevano che la comparsa di Sirio portasse con sé il clima caldo e secco dell'estate e che mostrasse i suoi effetti sull'avvizzimento delle piante e sull'indebolimento degli uomini. A causa della sua luminosità, probabilmente si notò che Sirio scintillava maggiormente nelle sere di inizio estate, fenomeno dovuto in realtà all'instabilità meteorologica tipica di quel periodo, e si credeva che questo fosse dovuto alle emanazioni deleterie della stella che arrivavano sulla Terra. Chi "soffriva" degli effetti della stella veniva detto ἀστρόβλητος (astròbletos) col significato di "colpito dalla stella". Sirio veniva descritta in letteratura come "bruciante" o "fiammante"; il nome stesso di Sirio deriva dall'aggettivo σείριος (séirios; originariamente σϝείριος, swéirios), che significa "splendente". La stagione che seguiva l'avvento della stella nel cielo mattutino era chiamata Canicola (con evidente riferimento al termine "Cane", che designa la costellazione di appartenenza della stella) o estate. Gli abitanti dell'isola di Ceos, nel Mare Egeo avrebbero offerto dei sacrifici a Sirio e a Zeus per invocare i venti rinfrescanti, e avrebbero atteso la riapparsa della stella in estate. Se questa, alla prima levata, sorgeva nitidamente, avrebbe significato buona fortuna, ma se sorgeva debole e scintillante, avrebbe portato effetti deleteri o pestilenze. Le monete provenienti dall'isola dal III secolo a.C. mostravano dei cani o delle stelle che emanavano raggi, ribadendo l'importanza che Sirio aveva presso i suoi abitanti. I Romani celebravano il tramontare eliaco di Sirio intorno al 25 aprile, sacrificando un cane, accompagnato da incenso, vino e una pecora alla dea Robigo in modo che le emanazioni nefaste della stella non causassero danni al raccolto del grano di quell'anno. Tolomeo di Alessandria mappò le stelle nei libri VII e VIII della sua opera Almagesto, in cui usava Sirio come riferimento per tracciare il meridiano centrale del globo. Curiosamente, la indicò come una delle sei stelle del cielo a lui note di colore rosso (vedi Il colore di Sirio nell'antichità). Le altre cinque sono, effettivamente, stelle di classe spettrale K e M, come Arturo e Betelgeuse. Le stelle luminose erano importanti per gli antichi Polinesiani, in quanto fungevano da riferimento per la navigazione fra le varie isole e atolli del grande Oceano Pacifico. Basse sull'orizzonte, sembrava si comportassero come delle bussole stellari che assistevano i marinai quando tracciavano la rotta verso una particolare destinazione. Inoltre potevano essere utilizzate come dei riferimenti per la latitudine: la declinazione di Sirio, ad esempio, incontra la latitudine dell'isola di Figi, a 17°S, e perciò da quest'isola Sirio si mostra allo zenit. Sirio indicava per loro il corpo di un "Grande Uccello" che indicavano col nome Manu, dove Canopo indicava la punta dell'ala meridionale e Procione quella settentrionale, che divideva il cielo notturno dei polinesiani in due emisferi. Così come l'apparire di Sirio nel cielo mattutino indicava l'arrivo dell'estate per i Greci, per i Māori segnava invece il freddo inizio dell'inverno; il nome Takurua infatti indicava sia la stella che la stagione invernale. La sua culminazione al solstizio d'inverno era segnata da una celebrazione nelle isole Hawaii,dove era chiamata Ka'ulua, ossia "Regina del cielo". Ci sono pervenuti molti altri nomi polinesiani, fra i quali Tau-ua nelle Isole Marchesi, Rehua in Nuova Zelanda e Aa e Hoku-Kauopae sempre nelle Hawaii. Nel 1676, Edmond Halley passò un anno sull'isola di Sant'Elena, nel sud Atlantico, per osservare le stelle del sud. Circa 40 anni dopo, nel 1718, scoprì il moto proprio di quelle che fino a quel momento erano ritenute "stelle fisse", dopo aver comparato le sue misure astrometriche con quelle dell'Almagesto di Tolomeo. Notò che Arturo e Sirio si erano spostate notevolmente rispetto alle altre, e in particolare quest'ultima si era spostata di ben 30 minuti d'arco (circa il diametro apparente della Luna) verso sud in 1800 anni. Nel 1868 Sirio diventò la prima stella la cui velocità fosse stata misurata. William Huggins esaminò lo spettro di questa stella e osservò un notevole spostamento verso il rosso, concludendo che Sirio si stava allontanando dal Sistema Solare alla velocità di circa 40 km/s. Studi successivi hanno corretto questa misura in circa −5,5 km/s,: ciò significa che Sirio si sta in realtà avvicinando al Sole. È possibile che Huggins non avesse preso in considerazione la velocità orbitale della Terra, omissione che può aver causato un errore fino a 30 km/s. Nel 1844, studiando i cambiamenti di moto proprio di Sirio, l'astronomo tedesco Friedrich Bessel dedusse che questa stella avrebbe potuto possedere una compagna invisibile.[39] Circa vent'anni dopo, il 31 gennaio 1862, l'astronomo e costruttore di telescopi americano Alvan Graham Clark osservò per la prima volta questa componente, una nana bianca oggi nota come Sirio B, la seconda di questa classe di stelle ad essere stata mai osservata. La stella visibile è oggi talvolta nota come Sirio A. Dal 1894, sono state osservate alcune apparenti irregolarità orbitali del sistema di Sirio, suggerendo così l'ipotesi di una terza stella estremamente piccola, ma quest'ipotesi non è mai stata confermata. Le misurazioni indicano un'orbita di sei anni attorno a Sirio A e una massa di appena 0,06 masse solari; questa stella potrebbe essere cinque o dieci magnitudini più debole della nana bianca Sirio B. Osservazioni più recenti non sono riuscite a confermare l'esistenza di un terzo membro del sistema di Sirio, ma ancora non hanno del tutto escluso la possibilità che ci possa davvero essere una terza componente del sistema. Un'apparente "terza stella" osservata negli anni venti sembra essere stata invece un oggetto di fondo. Nel 1915 Walter Sydney Adams, usando il riflettore di 1,5 metri nell'Osservatorio di Monte Wilson, osservò lo spettro di Sirio B e determinò che si trattava di una debole stella bianca. Ciò portò gli astronomi a concludere che si trattasse di una nana bianca. Il diametro di Sirio A è stato per la prima volta misurato da Robert Hanbury Brown e da Richard Q. Twiss nel 1859 a Jodrell Bank, utilizzando il loro interferometro a intensità. Nel 2005, usando il Telescopio Spaziale Hubble, gli astronomi hanno determinato che Sirio B possiede all'incirca il diametro della Terra, 12000 km, con una densità molto elevata e una massa pari a circa il 98% di quella del Sole. 

Curiosità extra: il colore di Sirio nell'antichità

Nel 150 d.C., l'astronomo Claudio Tolomeo descrisse Sirio come di colore rosso, assieme ad altre cinque stelle, Betelgeuse, Antares, Aldebaran, Arturo e Polluce, tutte di colore effettivamente arancione o rosso vivo. La discrepanza fu inizialmente notata dall'astronomo amatoriale Thomas Barker, che redasse un appunto e ne parlò ad una riunione della Royal Society di Londra nel 1760. L'esistenza di altre stelle che cambiavano la luminosità diede adito alla credenza che alcune potessero anche cambiare di colore; John Herschel lo annotò nel 1839, forse influenzato dall'osservazione che fece due anni prima della stella Eta Carinae. Thomas Jefferson Jackson See riportò all'attenzione della comunità scientifica il caso del colore di Sirio nel 1892, con la pubblicazione di diverse riviste e un sommario finale nel 1926. Egli citò che non solo Tolomeo, ma anche il poeta Arato di Soli, l'oratore Marco Tullio Cicerone e il generale Germanico Cesare si riferivano a Sirio come una stella di colore rosso, aggiungendo inoltre che nessuno di questi ultimi tre autori era un astronomo. Pure Seneca il giovane descrisse Sirio come una stella dall'intenso colore rosso, più del pianeta Marte. Tuttavia, non tutti gli antichi osservatori riportano che Sirio fosse una stella rossa. Il poeta Marco Manilio, vissuto nel I secolo d.C., la descrive come una stella di color blu-oltremare, così come fece Rufio Festo Avieno nel IV secolo. Nell'antica Cina è la stella standard per il colore bianco, mentre diverse annotazioni dal II secolo a.C. al VII secolo d.C. la descrivono come una stella di colore bianco. Nel 1985, gli astronomi tedeschi Wolfhard Schlosser e Werner Bergmann pubblicarono un passo di un manoscritto lombardo dell'VIII secolo; il testo, in latino, insegnava come determinare l'orario delle preghiere notturne tramite la posizione delle stelle, e Sirio è descritta come rubeola, ossia rossastra. Gli autori proposero che questa potesse essere un'indicazione di come a quel tempo la stella Sirio B fosse una gigante rossa. Tuttavia, altri astronomi replicarono che si trattasse invece della stella Arturo. La possibilità che l'evoluzione stellare di Sirio A o di Sirio B possa essere stata responsabile delle discrepanze osservate in passato è stata rigettata in blocco dagli astronomi, poiché una scala temporale dell'ordine delle migliaia di anni sarebbe troppo breve e perché non ci sono segni di nebulosità attorno al sistema che possa giustificare un tale cambiamento. È stata anche proposta l'interazione di una terza stella, finora sconosciuta, come responsabile di ciò. Spiegazioni alternative sono che si sia trattato soltanto di metafore poetiche per indicare periodi o avvenimenti infausti, oppure che sia avvenuto un improvviso brillamento della stella nel periodo in cui veniva osservata, tanto da dare l'impressione che la stella fosse rossa. Ad occhio nudo, spesso appare colorata di rosso, bianco e blu-verdastro quando è bassa sull'orizzonte, ma si tratta di un effetto dovuto ai densi strati dell'atmosfera terrestre e quando la stella, come tutte del resto, sono alte in cielo, sembrano assumere un colore stabile.

Le coordinate attuali di Sirio farebbero pensare che da sempre la stella sia stata visibile da tutti i popoli storici e preistorici della Terra; in realtà, a causa della precessione degli equinozi, le coordinate della stella variano sensibilmente. Attualmente, l'ascensione retta di Sirio è pari a 6h 45m, ossia prossima alle 6h di ascensione retta; questo valore corrisponde al punto più settentrionale che l'eclittica raggiunge a nord dell'equatore celeste, e dunque segna anche il punto più settentrionale che un oggetto celeste può raggiungere. Dunque, attualmente, Sirio si trova alla sua declinazione più settentrionale, che corrisponde a circa −16°. Nell'epoca precessionale opposta alla nostra (avvenuta circa 13 000 anni fa), Sirio aveva una coordinata di ascensione retta pari a 18h, che corrisponde alla declinazione più meridionale che un oggetto può raggiungere; sottraendo ai −16° attuali un valore di 47° (pari al doppio dell'angolo di inclinazione dell'asse terrestre), otteniamo una coordinata di −63°. Questo significa che, 13 000 anni fa, Sirio era una stella molto meridionale, e poteva essere osservata solo a sud del 27º parallelo nord. Dunque, per buona parte dell'epoca precessionale completa, Sirio non è osservabile da molte regioni dell'emisfero boreale. Attualmente, la declinazione di Sirio tende a spostarsi lentamente in direzione sud, assieme alla seconda stella più brillante del cielo, Canopo. Tra circa 9 000 anni, non sarà più visibile da quasi tutto il bacino del Mediterraneo, dalla Cina settentrionale e da gran parte dell'America del nord. A questo movimento è da sommarsi il moto proprio della stella stessa, che essendo molto vicina appare notevole: Sirio sembra muoversi infatti in direzione della costellazione della Colomba, a sud-sud-ovest, ad una velocità di oltre 1º in 4000 anni. Sirio entro i prossimi 60 000 anni tenderà ad aumentare la sua luminosità apparente, finché raggiungerà un massimo di circa −1,66. La stella Vega, in avvicinamento a noi, aumenterà la sua luminosità molto più rapidamente, fino a raggiungere entro 290 000 anni l'attuale magnitudine apparente di Sirio; più in fretta ancora aumenterà la luminosità di Altair, che passerà da un attuale valore di 0,77 a −0,53 in 140 000 anni. Arturo si trova attualmente al punto più vicino a noi, dunque in futuro la sua luminosità diminuirà, come quella di Canopo, che fino a 90 000 anni fa era la stella più brillante del cielo. L'attuale stella più vicina a noi è α Centauri, la quale continuerà ad avvicinarsi entro i prossimi 25 000 anni. Sirio divenne, secondo il grafico qui sotto, la stella più luminosa circa 90 000 anni fa, quando con il suo avvicinarsi a noi superò la luminosità apparente di Canopo, che divenne così la seconda stella più luminosa del cielo. La tabella indica invece i dati delle magnitudini apparenti delle stelle esaminate nel grafico, con un campionamento di 25 000 anni; il grassetto indica la stella più luminosa nell'anno indicato. Sirio, come già visto, è un sistema binario composto da due stelle bianche orbitanti l'una attorno all'altra con una separazione di circa 20 au (grosso modo la distanza fra il Sole e Urano) e un periodo di poco superiore ai 50 anni. La componente più luminosa, nota come Sirio A, è una stella di sequenza principale, con classe spettrale A1V e con una temperatura superficiale stimata di 9940 K. La sua compagna, Sirio B, è una stella che già si è evoluta, uscendo dalla sequenza principale e diventando una gigante rossa e quindi una nana bianca. Attualmente è 10 000 volte meno luminosa nella banda della luce visibile, mentre una volta era la più massiccia delle due. L'età del sistema è stata stimata sui 230 milioni di anni. Si pensa che inizialmente il sistema fosse composto da due stelle bianco-azzurre orbitanti l'una attorno all'altra in un'orbita ellittica ogni 9,1 anni. Il sistema emette un livello di infrarossi più alto di quanto ci si aspetterebbe, misurato dal satellite infrarosso IRAS; questo potrebbe essere un indicatore della presenza di polveri nel sistema ed è considerata una cosa inusuale per una stella doppia. Sirio A possiede una massa di circa 2,1 volte quella del Sole. Il raggio della stella è stato misurato tramite l'interferometria astronomica, che ha fornito un diametro angolare di 5,936 ± 0,016 milliarcosecondi, che equivale ad 1,88 volte il raggio del Sole. La velocità di rotazione è relativamente bassa, di 16 km/s, che non produce alcun fenomeno di schiacciamento ai poli; in ciò differisce notevolmente da Vega, una stella con una massa simile che però ruota alla grande velocità di 274 km/s e possiede quindi un notevole rigonfiamento equatoriale. I modelli stellari suggeriscono che la stella si sia formata in seguito al collasso di una nube molecolare e che dopo circa 10 milioni di anni la sua generazione di energia interna sia derivata interamente dalla fusione nucleare; l'interno divenne convettivo e l'energia iniziò ad essere generata tramite il ciclo CNO. Si presume che Sirio A esaurirà completamente la sua riserva di idrogeno del nucleo entro un miliardo di anni dalla sua formazione; a questo punto passerà attraverso lo stadio di gigante rossa e quindi perderà gli strati esterni diventando una nana bianca. Lo spettro di Sirio A mostra delle profonde linee metalliche, indicanti un aumento di elementi più pesanti dell'elio come il ferro. Comparando questi valori con quelli del Sole, la proporzione di ferro nell'atmosfera di Sirio A relativamente all'idrogeno è data a Fe/H==0.5, equivalente a 100,5, il che significa che possiede il 316% della proporzione del ferro sull'atmosfera solare in più. Appare improbabile che l'alto contenuto in metalli della superficie sia simile a quello dell'intera stella, perciò si ritiene che questi metalli siano sospesi da una sottile zona convettiva nella superficie. Con una massa quasi equivalente a quella del Sole, Sirio B è una delle nane bianche più massicce conosciute; la sua massa è concentrata in un volume molto simile a quello della Terra. La sua temperatura superficiale è di 25200 K; tuttavia dal momento che non possiede una sorgente interna di energia, Sirio B tende a raffreddarsi lentamente e il suo calore tenderà a disperdersi nello spazio per un periodo di oltre due miliardi di anni. Una nana bianca si forma solo dopo che la stella si è evoluta dalla sequenza principale ed è passata attraverso lo stadio di gigante rossa. Questo avvenne quando Sirio B aveva meno della metà dell'età che possiede tuttora, ossia circa 120 milioni di anni fa. La stella originale aveva una massa di cinque masse solari ed era probabilmente di tipo B (forse B4 o B5) quando si trovava nella sequenza principale. Durante il passaggio attraverso lo stadio di gigante rossa, Sirio B potrebbe aver arricchito la metallicità della stella compagna. Sirio B è composta principalmente da una mistura di carbonio e ossigeno che fu generata dalla fusione dell'elio nella stella progenitrice, ed è ricoperta da un involucro di elementi più leggeri, con materiali segregati dalla massa a causa dell'elevata gravità superficiale. Quindi l'atmosfera esterna di Sirio B è ora principalmente composta da puro idrogeno - l'elemento con la massa minore - e nel suo spettro non sono stati osservati altri elementi.Nel 1909 Ejnar Hertzsprung fu il primo a suggerire che Sirio fosse un membro dell'Associazione dell'Orsa Maggiore (Cr 285), basandosi sulle sue osservazioni dei movimenti del sistema nel cielo. Il gruppo dell'Orsa Maggiore è un insieme di 220 stelle che mostrano un moto comune nello spazio e si erano una volta formati come membri di un ammasso aperto, che è poi iniziato a dissolversi gravitazionalmente. Tuttavia, le analisi condotte nel 2003 e nel 2005 hanno trovato delle discrepanze che mettono in dubbio l'appartenenza di Sirio a quest'associazione stellare: il gruppo dell'Orsa Maggiore ha un'età stimata in 500±100 milioni di anni, mentre Sirio, con una metallicità simile a quella del Sole, avrebbe soltanto la metà di quest'età, rendendola così troppo giovane per appartenere al gruppo.[13] Sirio potrebbe però essere un membro di un'ipotetica Associazione di Sirio, assieme ad altre stelle sparse come α Coronae Borealis, β Crateris, β Eridani e β Serpentis. Si tratta così di uno dei tre grandi superammassi situati entro 500 anni luce dal Sole; gli altri due sono quello delle Iadi e quello delle Pleiadi, e ognuno di essi conta centinaia di stelle. La distanza da Sirio alla quale un pianeta dovrebbe trovarsi per avere condizioni fisiche favorevoli alla vita è 4,7 UA, circa 700 milioni di chilometri. Tuttavia ad una simile distanza non potrebbe avere un'orbita stabile, a causa delle perturbazioni dovute alla vicina Sirio B, e sarebbe stato distrutto dall'espansione degli strati più esterni di quest'ultima quando la stella era una gigante rossa. Anche se il pianeta si fosse formato in seguito, sarebbe probabilmente sottoposto ad un'incessante pioggia di comete e asteroidi (nel sistema di Sirio è stato rilevato un disco di polveri simile a quello che occupava il Sistema Solare nelle prime fasi della sua storia). La grande luminosità di Sirio ha attirato da sempre l'attenzione dei popoli più diversi. Il nome proprio più diffuso di questa stella è quello derivante dal latino, Sīrius (italianizzato in Sirio), che a sua volta deriva dal greco antico Σείριος (Seirios, con significato di "ardente"),[14] sebbene i Greci sembra abbiano importato a loro volta questo nome dall'epoca greca arcaica.[85] La prima testimonianza di questo nome è datata intorno al VII secolo a.C. nell'opera poetica Le opere e i giorni di Esiodo.[85] Tuttavia la stella è nota presso i popoli della Terra con oltre 50 nomi diversi.[86] In arabo è nota come الشعرى (al-ši'rā o al-shira, ossia "Il Capo"),[87] da cui deriva il nome alternativo Aschere. In sanscrito la stella era nota col nome di Mrgavyadha (Cacciatore di cervi) o Lubdhaka (Cacciatore). Col primo nome rappresenta Rudra (Shiva). In Scandinavia la stella era nota come Lokabrenna (La torcia di Loki), mentre in giapponese il nome della stella è 青星 (Aoboshi, la "stella blu"). In astrologia medioevale, Sirio era invece considerata una delle stelle fisse magiche, associata con il berillio e con il ginepro. Il suo simbolo cabalistico è stato elencato da Agrippa di Nettesheim. Molte culture storiche hanno dato a Sirio dei forti significati simbolici, in particolare legati ai cani; in effetti, è spesso chiamata nei Paesi anglosassoni con l'appellativo "Stella del Cane", ossia la stella più luminosa della costellazione del Cane Maggiore. Spesso appare anche legata al mito di Orione e al suo cane da caccia; gli antichi Greci credevano che le emanazioni di questa stella potessero avere degli effetti deleteri sui cani, rendendoli particolarmente irrequieti durante i caldi giorni dell'estate (i "Giorni del Cane"). L'eccessiva colorazione di questa stella spesso poteva essere messa in relazione con l'avvento di disastri naturali o di periodi particolarmente secchi e, in casi estremi, poteva infondere la rabbia nei cani, che poi veniva trasmessa agli uomini tramite i morsi, mietendo numerose vittime. I Romani chiamavano i giorni dell'inizio estate dies caniculares e la stella Canicula ("piccolo cane"). Nell'astronomia cinese la stella è conosciuta come la "stella del cane celestiale" (cinese e giapponese: 天狼; coreano: 천랑; cinese romanizzato: Tiānláng; giapponese romanizzato: Tenrō; koreano romanizzato: Cheonlang). Più lontano ancora, molte tribù di nativi americani associavano Sirio con un canide; alcune indigeni del sud-ovest del Nord America indicavano questa stella come un cane che seguiva delle pecore di montagna, mentre i Piedi Neri la chiamavano "faccia di cane". I Cherokee appaiavano Sirio ad Antares e le consideravano come due cani da guardia alle estremità di quello che chiamavano "percorso delle anime". Le tribù del Nebraska facevano invece diverse associazioni, come la "stella-lupo" o la "stella-coyote". Più a nord, gli Inuit dell'Alaska la chiamavano "Cane della Luna". Altre culture in diverse parti del mondo associavano invece la stella ad un arco e delle frecce. Gli antichi cinesi immaginavano un ampio arco e una freccia lungo il cielo australe, formato dalle attuali costellazioni della Poppa e del Cane Maggiore; la freccia era puntata sul lupo rappresentato da Sirio. Una simile associazione è rappresentata nel tempio di Hathor di Dendera, in Egitto, dove la dea Satet ha disegnato la sua freccia su Hathor (Sirio). Nella tarda cultura persiana la stella era similmente rappresentata come una freccia, ed era nota come Tir. Nel libro sacro dell'Islam, il Corano, Allah (Dio) viene definito il "Signore di Sirio". Il popolo dei Dogon è un gruppo etnico del Mali, in Africa Occidentale, noto per le sue conoscenze sulla stella Sirio che sarebbero da considerare impossibili senza l'uso di un telescopio. Come riportato nei libri Dio d'acqua. Incontri con Ogotemmêli e Le renard pâle di Marcel Griaule, questo popolo sarebbe stato al corrente della presenza di una compagna di Sirio (la "stella del fonio") che orbita attorno ad essa con un periodo di cinquant'anni prima della sua scoperta da parte degli astronomi moderni. Questi affermano inoltre che ci sia pure una terza compagna oltre a Sirio A e Sirio B. Il libro di Robert Temple Il mistero di Sirio, edito nel 1976, accredita loro anche la conoscenza dei quattro satelliti di Giove scoperti da Galileo e degli anelli di Saturno. Tutto ciò è diventato così oggetto di controversie e, talvolta, di speculazioni. Secondo un articolo edito nel 1978 sulla rivista Skeptical Enquirer, potrebbe essersi trattato di una contaminazione culturale, o forse proprio ad opera degli stessi etnografi.[99] Altri invece vedono queste spiegazioni fin troppo semplicistiche, create ad hoc per giustificare un mistero irrisolvibile secondo i dettami della scienza in vigore. Sirio è spesso utilizzata come soggetto da parte della fantascienza e della cultura popolare.[101] In marina militare, il nome è stato spesso utilizzato per battezzare delle navi da guerra, come le sette navi della Royal Navy inglese, come la serie HMS Sirius, con la prima di queste che è stata la nave ammiraglia della Prima Flotta in Australia, nel 1788. La Royal Australian Navy chiamò in seguito un vascello HMAS Sirius in onore della nave ammiraglia. I vascelli statunitensi includono la USNS Sirius come anche il monoplano Lockheed Sirius, il primo della cui serie fu pilotato da Charles Lindbergh. Il nome fu adottato anche dalla Mitsubishi Motors Corporation nella serie Mitsubishi Sirius Engine nel 1980. Nella letteratura la stella Sirio è stata ripresa, come già visto, diverse volte; non ultime, in letteratura italiana, le citazioni di Giovanni Pascoli in alcune delle sue opere, come La mietitura, nel ciclo Poemetti e da Attilio Bertolucci nella sua opera d'esordio "Sirio" del 1929. In letteratura straniera, uno dei riferimenti più noti attualmente è quello fatto da J. K. Rowling nella saga di Harry Potter, dove ha dato il nome della stella al padrino del giovane mago: Sirius Black, il quale è in grado di trasformarsi in un cane. Nella serie televisiva fantascientifica V-Visitors (1983) un'orda di alieni ostili spacciatisi per umanoidi, afferma di provenire dal quarto pianeta di Sirio. Sirio è anche il nome italiano di uno dei personaggi principali Sirio il Dragone, dei Cavalieri dello Zodiaco. Infine, in musica, alcuni compositori hanno fatto riferimento a questa stella: fra tutti si ricorda l'eccentrico compositore tedesco Karlheinz Stockhausen, il quale ha più volte affermato di "provenire da un pianeta del sistema di Sirio", facendo anche dei riferimenti a questa stella nella sua musica. Nella musica moderna, Star of Sirius è il titolo di una canzone del 1975 di Steve Hackett (allora chitarrista dei Genesis), apparsa nel suo primo album solista "Voyage of the Acolyte" cantata da Phil Collins; Sirius è il titolo di una traccia strumentale dei The Alan Parsons Project del 1982, apparsa sull'album Eye in the Sky, e di una canzone della band irlandese Clannad la cui voce è di Moya Brennan. Nel 2004 il gruppo symphonic metal svedese Therion ha pubblicato due album in contemporanea; uno di questi è Sirius B ed è in parte dedicato ai misteri della civiltà dei Dogon e al loro presunto incontro con extraterrestri venuti dal sistema Sirio A e Sirio B. 


Crea il tuo sito web gratis! Questo sito è stato creato con Webnode. Crea il tuo sito gratuito oggi stesso! Inizia