La cometa Shoemaker-Levy 9

Attualmente sono state classificate migliaia di comete. La Shoemaker-Levy 9, tuttavia, è divenuta famosa a causa dell'evento che ne ha causato la distruzione. Seguici su Eagle sera per saperne di più.


Cosa sono le comete

Una cometa è un corpo celeste relativamente piccolo, simile a un asteroide composto da gas ghiacciati (acqua, metano, ammoniaca, anidride carbonica), frammenti di rocce e metalli. Nel sistema solare, le orbite delle comete si estendono oltre quella di Plutone. Le comete che entrano nel sistema interno, e si rendono quindi visibili dalla Terra sono frequentemente caratterizzate da orbite ellittiche. Sono composte per la maggior parte di sostanze volatili ghiacciate, come biossido di carbonio, metano e acqua, mescolate con aggregati di polvere e vari minerali. La sublimazione delle sostanze volatili quando la cometa è in prossimità del Sole causa la formazione della chioma e della coda. Si pensa che le comete siano dei residui rimasti dalla condensazione della nebulosa da cui si formò il Sistema Solare: le zone periferiche di tale nebulosa sarebbero state abbastanza fredde da permettere all'acqua di trovarsi in forma solida (invece che come gas). È sbagliato descrivere le comete come asteroidi circondati da ghiaccio: i bordi esterni del disco di accrescimento della nebulosa erano così freddi che i corpi in via di formazione non subirono la differenziazione sperimentata da corpi in orbite più vicine al Sole. Il termine "cometa" viene dal greco κομήτης (kométes), che significa "chiomato", "dotato di chioma", a sua volta derivato da κόμη (kòme), cioè "chioma", "capelli", in quanto gli antichi paragonavano la coda di questi corpi celesti a una lunga capigliatura. I nuclei cometari possono variare in dimensione dalle centinaia di metri fino a cinquanta e più chilometri e sono composti da roccia, polvere e ghiacci d'acqua e di altre sostanze, comunemente presenti sulla Terra allo stato gassoso, quali monossido di carbonio, anidride carbonica, metano e ammoniaca. Sono spesso chiamate "palle di neve sporca", soprannome dato da Fred Whipple, creatore della teoria cometaria oggi più in voga, sebbene osservazioni recenti hanno rivelato forme irregolari e superfici secche di polveri o rocce, rendendo necessario ipotizzare i ghiacci sotto la crosta. Le comete sono composte inoltre da una varietà di composti organici: oltre ai gas già menzionati, sono presenti metanolo, acido cianidrico, formaldeide, etanolo ed etano e anche, forse, composti chimici dalle molecole più complesse come lunghe catene di idrocarburi e amminoacidi. Contrariamente a quanto si possa pensare, i nuclei cometari sono tra gli oggetti del Sistema solare più scuri conosciuti: alcuni sono più neri del carbone. La sonda Giotto scoprì che il nucleo della Cometa di Halley riflette circa il 4% della luce con cui viene illuminato, e la sonda Deep Space 1 scoprì che la superficie della cometa Borrelly riflette una percentuale tra il 2,4% e il 3%. Per confronto, il normale asfalto stradale riflette il 7% della luce incidente. Nel Sistema solare esterno le comete rimangono in uno stato congelato ed è estremamente difficile o impossibile rilevarle dalla Terra a causa delle loro ridotte dimensioni. Sono state riportate rilevazioni statistiche da parte del Telescopio spaziale Hubble di nuclei cometari non attivi nella fascia di Kuiper, sebbene le identificazioni siano state messe in discussione, e non abbiano ancora ricevuto delle conferme. Quando una cometa si avvicina al Sistema solare interno, il calore del Sole fa sublimare i suoi strati di ghiaccio più esterni. Le correnti di polvere e gas prodotte formano una grande, ma rarefatta atmosfera attorno al nucleo, chiamata "chioma", mentre la forza esercitata sulla chioma dalla pressione di radiazione del Sole, e soprattutto dal vento solare, conducono alla formazione di un'enorme "coda" che punta in direzione opposta al Sole. Chioma e coda risplendono sia per riflessione diretta della luce incidente, sia in conseguenza della ionizzazione dei gas per effetto del vento solare. Sebbene la maggior parte delle comete sia troppo debole per essere osservata senza l'ausilio di un binocolo o di un telescopio, ogni decennio alcune diventano ben visibili a occhio nudo. Occasionalmente una cometa può sperimentare un'enorme e improvvisa esplosione di gas e polveri, indicata comunemente con il termine inglese "outburst". Nella fase espansiva seguente la chioma può raggiungere dimensioni ragguardevoli. Nel novembre del 2007 per la chioma della Cometa Holmes è stato stimato un diametro di 1,4 milioni di chilometri, pari a quello del Sole. Per un brevissimo periodo, la cometa ha posseduto l'atmosfera più estesa del Sistema solare. Spesso polveri e gas formano due code distinte, che puntano in direzioni leggermente differenti: la polvere, più pesante, rimane indietro rispetto al nucleo e forma spesso una coda incurvata, che si mantiene sull'orbita della cometa; il gas, più sensibile al vento solare, forma una coda diritta, in direzione opposta al Sole, seguendo le linee del campo magnetico locale piuttosto che traiettorie orbitali. Viste prospettiche dalla Terra possono determinare configurazioni in cui le due code si sviluppano in direzioni opposte rispetto al nucleo; oppure in cui la coda di polveri, più estesa, appare a entrambi i lati di esso. In questo caso, si dice che la cometa possiede una coda e un'anti-coda. Un esempio recente ne è stata la Cometa Lulin. Mentre il nucleo è generalmente inferiore ai 50 km di diametro, la chioma può superare le dimensioni del Sole e sono state osservate code ioniche di estensione superiore a 1 UA (150 milioni di chilometri). È stato proprio grazie all'osservazione della coda di una cometa, disposta in direzione opposta al Sole, che Ludwig Biermann ha contribuito significativamente alla scoperta del vento solare. Sono comunque estremamente tenui, tanto che è possibile vedere le stelle attraverso di esse. La coda ionica si forma per effetto fotoelettrico, come risultato dell'azione della radiazione solare ultravioletta incidente sulla chioma. La radiazione incidente è sufficientemente energetica da superare l'energia di ionizzazione richiesta dalle particelle degli strati superiori della chioma, che vengono trasformate così in ioni. Il processo conduce alla formazione di un nuvola di particelle cariche positivamente intorno alla cometa che determina la formazione di una "magnetosfera indotta", che costituisce un ostacolo per il moto del vento solare. Poiché inoltre la velocità relativa tra il vento solare e la cometa è supersonica, a monte della cometa e nella direzione di flusso del vento solare si forma un bow shock, nel quale si raggruppa un'elevata concentrazione degli ioni cometari (chiamati "pick up ions"). Il vento solare ne risulta arricchito di plasma in modo che le linee di campo "drappeggiano" attorno alla cometa formando la coda ionica. Se l'intensità del vento solare aumenta a un livello sufficiente, le linee del campo magnetico a esso associato si stringono attorno alla cometa e a una certa distanza lungo la coda, oltrepassata la chioma, si verifica la riconnessione magnetica. Ciò conduce a un "evento di disconnessione della coda": la coda perde la propria continuità (si "spezza") e la porzione oltre la disconnessione si disperde nello spazio. Sono state osservate diverse occorrenze di tali eventi. Degna di nota è la disconnessione della coda della Cometa Encke avvenuta il 20 aprile del 2007, quando la cometa è stata investita da un'espulsione di massa coronale. L'osservatorio orbitante solare STEREO-A registrò alcune immagini dell'evento, che, montate a costituire una sequenza, sono visibili qui a lato. L'osservazione della Cometa Hyakutake nel 1996 ha condotto alla scoperta che le comete emettono raggi X. La scoperta destò sorpresa tra gli astronomi, che non avevano previsto che le comete potessero emetterne. Si ritiene che i raggi X siano prodotti dall'interazione tra le comete e il vento solare: quando ioni con carica elevata attraversano un'atmosfera cometaria, collidono con gli atomi e le molecole che la compongono. Nella collisione, gli ioni catturano uno o più elettroni emettendo nello stesso tempo raggi X e fotoni nel lontano ultravioletto. La maggior parte delle comete seguono orbite ellittiche molto allungate che le portano ad avvicinarsi al Sole per brevi periodi e a permanere nelle zone più lontane del Sistema solare per la restante parte. Le comete sono usualmente classificate in base alla lunghezza del loro periodo orbitale.

  • Sono definite comete di corto periodo quelle che hanno un periodo orbitale inferiore a 200 anni. La maggior parte di esse percorre orbite che giacciono in prossimità del piano dell'eclittica, con lo stesso verso di percorrenza dei pianeti. Tali orbite sono generalmente caratterizzate da un afelio posto nella regione dei pianeti esterni (dall'orbita di Giove in poi). Per esempio, l'afelio dell'orbita della Cometa di Halley si trova poco oltre l'orbita di Nettuno. All'estremo opposto, la Cometa Encke percorre un'orbita che non la porta mai a oltrepassare quella di Giove. Le comete periodiche sono a loro volta suddivise nella famiglia cometaria di Giove (comete con periodo inferiore ai 20 anni) e nella famiglia cometaria di Halley (comete con periodo compreso tra i 20 e i 200 anni).
  • Le comete di lungo periodo percorrono orbite con elevate eccentricità e con periodi compresi tra 200 e migliaia o anche milioni di anni. (Comunque, per definizione, rimangono gravitazionalmente legate al Sole; non è possibile parlare propriamente di periodo, infatti, in riferimento a quelle comete che sono espulse dal Sistema solare in seguito all'incontro ravvicinato con un pianeta). Le loro orbite sono caratterizzate da afelii posti molto oltre la regione dei pianeti esterni e i piani orbitali presentano una grande varietà di inclinazioni rispetto al piano dell'eclittica.
  • Le comete extrasolari (in inglese Single-apparition comets o "comete da una singola apparizione") percorrono orbite paraboliche o iperboliche che le portano a uscire permanentemente dal Sistema solare dopo esser passate una volta in prossimità del Sole.
  • Alcune fonti utilizzano la locuzione cometa periodica per riferirsi a ogni cometa che percorra un'orbita chiusa (cioè, tutte le comete di corto periodo e quelle di lungo periodo), mentre altre la utilizzano esclusivamente per le comete di corto periodo. Similmente, sebbene il significato letterale di "cometa non periodica" sia lo stesso di "cometa da una singola apparizione", alcuni lo utilizzano per riferirsi a tutte le comete che non sono "periodiche" nella seconda accezione del termine (cioè, includendo tutte le comete con un periodo superiore a 200 anni).
  • Comete recentemente scoperte nella fascia principale degli asteroidi (cioè corpi appartenenti alla fascia principale che manifestano attività cometaria durante una parte della loro orbita) percorrono orbite semi-circolari e sono state classificate a loro stanti.
  • Esistono infine le comete radenti (in inglese sun-grazing, ovvero "che sfiorano il Sole"), dal perielio così vicino al Sole che ne sfiorano letteralmente la superficie. Esse hanno breve vita, perché l'intensa radiazione solare le fa evaporare in pochissimo tempo. Sono, inoltre, difficili da osservare, a causa dell'intensa luce solare molto vicina: per osservarle occorre usare strumenti speciali come un coronografo, usare un filtro a banda molto stretta, osservarle durante un eclissi totale di Sole, o tramite un satellite.

Da considerazioni sulle caratteristiche orbitali, si ritiene che le comete di corto periodo (decine o centinaia di anni) provengano dalla fascia di Kuiper o dal disco diffuso - un disco di oggetti nella regione transnettuniana - mentre si ritiene che il serbatoio delle comete a lungo periodo sia la ben più distante nube di Oort (una distribuzione sferica di oggetti che costituisce il confine del Sistema solare, la cui esistenza è stata ipotizzata dall'astronomo olandese Jan Oort). È stato ipotizzato che in tali regioni distanti, un gran numero di comete orbiti intorno al Sole su orbite quasi circolari. Occasionalmente l'influenza gravitazionale dei pianeti esterni (nel caso degli oggetti presenti nella fascia di Kuiper) o delle stelle vicine (nel caso di quelli presenti nella nube di Oort) sposta uno di questi oggetti su un'orbita altamente ellittica che lo porta a tuffarsi verso le regioni interne del Sistema solare, dove appare come una vistosa cometa. Altre teorie ipotizzate nel passato prevedevano l'esistenza di una compagna sconosciuta del Sole chiamata Nemesi, o un ipotetico Pianeta X. A differenza del ritorno delle comete periodiche le cui orbite sono state determinate durante i transiti precedenti, non è predicibile la comparsa di una nuova cometa tramite questo meccanismo. Poiché le orbite percorse portano le comete in prossimità dei giganti gassosi, esse sono soggette a ulteriori perturbazioni gravitazionali. Le comete di corto periodo mostrano la tendenza di regolarizzare il proprio afelio e portarlo a coincidere con il raggio orbitale di uno dei pianeti giganti; un chiaro esempio di questo fenomeno è l'esistenza della famiglia cometaria di Giove. È chiaro inoltre che anche le orbite delle comete provenienti dalla nube di Oort possono essere fortemente alterate dall'incontro con un gigante gassoso. Giove è la principale fonte di perturbazioni, possedendo una massa quasi doppia rispetto a tutti gli altri pianeti messi assieme, oltre al fatto che è anche il pianeta gigante che completa la propria orbita più rapidamente. Queste perturbazioni possono trasferire a volte comete di lungo periodo su orbite con periodi orbitali più brevi (la Cometa di Halley ne è un esempio). È interessante osservare che l'orbita che viene determinata per una cometa è un'orbita osculatrice, che non tiene conto delle perturbazioni gravitazionali e non a cui può essere soggetta la cometa. Un esempio ne è il fatto che le orbite delle comete di corto periodo rivelano piccole variazioni dei parametri orbitali a ogni transito. Ancora più significativo è quanto accade per le comete di lungo periodo. Per molte di esse viene calcolata un'orbita parabolica o iperbolica considerando la massa del Sole concentrata nel suo centro; se però l'orbita viene calcolata quando la cometa è oltre l'orbita di Nettuno e assegnando all'attrattore principale la massa presente nelle regioni più interne del Sistema solare concentrata nel centro di massa del Sistema solare (prevalentemente del sistema composto dal Sole e da Giove), allora la stessa orbita risulta ellittica. La maggior parte della comete paraboliche e iperboliche appartengono quindi al Sistema solare. Una cometa proveniente dallo spazio interstellare dovrebbe invece essere identificabile da un valore dell'energia orbitale specifica nettamente positivo, corrispondente a una velocità di attraversamento del Sistema solare interno di poche decine di km/s. Una stima approssimativa del numero di tali comete potrebbe essere di quattro per secolo. Alcune comete periodiche scoperte nel secolo scorso sono "perdute". Per alcune di esse, le osservazioni non permisero di determinare un'orbita con la precisione necessaria a predirne il ritorno. Di altre, invece, è stata osservata la frantumazione del nucleo. Quello che può essere stato il loro destino sarà descritto in una sezione successiva. Tuttavia, occasionalmente una "nuova" cometa scoperta presenta parametri orbitali compatibili con una cometa perduta. Esempi ne sono le comete 11P/Tempel-Swift-LINEAR, scoperta nel 1869, perduta dopo il 1908 in seguito a un incontro ravvicinato con Giove e riscoperta nel 2001 nell'ambito del programma automatizzato per la ricerca di asteroidi LINEAR del Lincoln Laboratory, e la 206P/Barnard-Boattini, scoperta nel 1892 grazie all'utilizzo della fotografia, perduta per più di un secolo e riscoperta nel 2008 dall'astronomo italiano Andrea Boattini. Le comete hanno vita relativamente breve. I ripetuti passaggi vicino al Sole le spogliano progressivamente degli elementi volatili, fino a che la coda non si può più formare, e rimane solo il materiale roccioso. Se questo non è abbastanza legato, la cometa può semplicemente svanire in una nuvola di polveri. Se invece il nucleo roccioso è consistente, la cometa è adesso diventata un asteroide inerte, che non subirà più cambiamenti. La frammentazione delle comete può essere attribuita essenzialmente a tre effetti: all'urto con un meteorite, a effetti mareali di un corpo maggiore, quale conseguenza dello shock termico derivante da un repentino riscaldamento del nucleo cometario. Spesso episodi di frantumazione seguono fasi di intensa attività della cometa, indicate col termine inglese "outburst". La frammentazione può comportare un aumento della superficie esposta al Sole e può risolversi in un rapido processo di disgregazione della cometa. L'osservazione della frammentazione del nucleo della cometa periodica Schwassmann-Wachmann 3 ha permesso di raccogliere nuovi dati su questo fenomeno. Alcune comete possono subire una fine più violenta: cadere nel Sole oppure entrare in collisione con un pianeta, durante le loro innumerevoli orbite che percorrono il Sistema solare in lungo e in largo. Le collisioni tra pianeti e comete sono piuttosto frequenti su scala astronomica: la Terra incontrò una piccola cometa nel 1908, che esplose nella taiga siberiana causando l'evento di Tunguska, che rase al suolo migliaia di chilometri quadrati di foresta. Nel 1910 la Terra passò attraverso la coda della Cometa di Halley, ma le code sono talmente immateriali che il nostro pianeta non subì il minimo effetto. Tra la seconda metà degli anni sessanta e i primi anni settanta la cometa Shoemaker-Levy 9 passò troppo vicino a Giove e rimase catturata dalla gravità del pianeta. Le forze di marea causate dalla gravità spezzarono il nucleo in una decina di pezzi, i quali poi bombardarono il pianeta nel 1994 offrendo viste spettacolari ai telescopi di mezzo mondo, da tempo in allerta per seguire l'evento. Divenne immediatamente chiaro il significato di strane formazioni che si trovano sulla Luna e su altri corpi rocciosi del Sistema solare: catene di piccoli crateri, posti in linea retta uno dopo l'altro. È evidente che una cometa passò troppo vicino al nostro pianeta, ne rimase spezzata, e andò a finire contro la Luna causando la catena di crateri. La collisione di una grossa cometa con la Terra sarebbe un disastro immane se avvenisse vicino a una grande città, perché causerebbe sicuramente migliaia, se non milioni di morti. Fortunatamente, seppur frequenti su scala astronomica, tali eventi sono molto rari su scala umana, e i luoghi densamente abitati della Terra sono ancora molto pochi rispetto alle vaste aree disabitate o coperte dai mari. Il nucleo di ogni cometa perde continuamente materia, che va a formare la coda. La parte più pesante di questo materiale non è spinta via dal vento solare, ma resta su un'orbita simile a quella originaria. Col tempo, l'orbita descritta dalla cometa si riempie di sciami di particelle piccolissime, ma molto numerose, e raggruppate in nubi che hanno origine in corrispondenza di un periodo di attività del nucleo. Quando la Terra incrocia l'orbita di una cometa in corrispondenza di una nube, il risultato è uno sciame di stelle cadenti, come le famose "lacrime di San Lorenzo" (10 agosto), o numerosi sciami più piccoli e meno conosciuti. A volte le nubi sono densissime: la Terra incrocia, ogni 33 anni, la parte più densa della nube delle Leonidi, derivanti dalla cometa 55P/Tempel-Tuttle. Nel 1833 e nel 1966 le Leonidi diedero luogo a "piogge", con conteggi superiori alle dieci meteore al secondo, gli sciami del 1899 e del 1933 non sono stati altrettanto prolifici. Negli ultimi due secoli, sono state adottate diverse convenzioni tra loro differenti per la nomenclatura delle comete. Prima che fosse adottata la prima di esse, le comete venivano identificate con una grande varietà di nominativi. Precedentemente ai primi anni del XX secolo, ci si riferiva alla maggior parte delle comete con l'anno in cui erano apparse, a volte con aggettivi addizionali per le comete particolarmente brillanti; ad esempio, la "Grande Cometa del 1680" (o Cometa di Kirch), la "Grande Cometa del settembre del 1882", e la "Cometa Daylight del 1910" ("Grande Cometa Diurna del 1910") - a indicare che la cometa era stata visibile anche di giorno. Dopo che Edmund Halley ebbe dimostrato che le comete del 1531, 1607 e 1682 erano lo stesso oggetto celeste e ne predisse correttamente il ritorno nel 1759, quella cometa divenne nota come la Cometa di Halley.[30] Similmente, la seconda e la terza cometa periodica conosciuta, la Cometa Encke[26] e la Cometa Biela,[26] furono nominate dal cognome degli astronomi che ne calcolarono l'orbita, piuttosto che da quello dei loro scopritori. Successivamente, le comete periodiche saranno nominate abitualmente dal nome degli scopritori, ma si continuerà a riferirsi soltanto con l'anno alle comete che appaiono solo una volta. In particolare, divenne usanza comune nominare le comete dagli scopritori nei primi anni del XX secolo e questa convenzione è adottata anche oggi. Una cometa può essere nominata dal nome di non più di tre scopritori. In anni recenti, molte comete sono state scoperte da strumenti manovrati da un consistente numero di astronomi e in questi casi le comete possono essere nominate dalla denominazione dello strumento. Per esempio, la Cometa IRAS-Araki-Alcock fu scoperta indipendentemente dal satellite IRAS e dagli astronomi amatoriali Genichi Araki e George Alcock. Nel passato, quando più comete venivano scoperte dallo stesso individuo, o gruppo di individui o squadra di ricerca, le comete venivano distinte aggiungendo un numero al nome dello scopritore (ma solo per le comete periodiche), ad esempio le Comete Shoemaker-Levy 1-9. Oggi che la maggior parte delle comete viene scoperta da alcuni strumenti (nel dicembre del 2010, il telescopio orbitante solare SOHO ha scoperto la sua duemillesima cometa) questo sistema è divenuto poco pratico e non è fatto alcun tentativo per assicurare a ogni cometa un nome univoco, composto dalla denominazione dello strumento e dal numero. Invece, è stata adottata una designazione sistematica delle comete per evitare confusione. Fino al 1994 alle comete era assegnata una designazione provvisoria composta dall'anno della scoperta seguito da una lettera minuscola a indicare l'ordine di scoperta nell'anno (per esempio, la Cometa 1969-i (Bennett) è stata la 9ª cometa scoperta nel 1969). Una volta che era stato osservato il passaggio al perielio della cometa e ne era stata calcolata l'orbita con una buona approssimazione, alla cometa veniva assegnata una designazione permanente composta dall'anno del passaggio al perielio e da un numero romano indicante l'ordine di passaggio al perielio nell'anno. Così la Cometa 1969i è diventata la Cometa 1970 II (la seconda cometa a esser passata al perielio nel 1970). Aumentando il numero delle comete scoperte, questa procedura divenne scomoda e nel 1994 l'Unione Astronomica Internazionale ha adottato una nuova nomenclatura. Adesso, al momento della loro scoperta le comete ricevono una sigla composta da "C/", dall'anno della scoperta, da una lettera maiuscola dell'alfabeto e un numero; la lettera indica in quale mese e parte del mese (prima o seconda metà) è stata scoperta, il numero indica l'ordine progressivo di annuncio della scoperta, durante ogni periodo di mezzo mese; a questa sigla segue il nome dello scopritore. Possono essere attribuiti fino a tre nomi o, se il caso, il nome del programma o del satellite che ha effettuato la scoperta. Negli ultimi anni si è assistito alla scoperta della natura cometaria di numerosi oggetti ritenuti inizialmente di natura asteroidale. Se tale scoperta avviene entro breve tempo dall'individuazione dell'oggetto, viene aggiunta alla sigla asteroidale la parte iniziale della sigla attribuita alle comete periodiche (P/); se invece si tratta di asteroidi scoperti e osservati da anni, all'oggetto viene assegnata una seconda denominazione cometaria e mantiene anche quella asteroidale. Nella nomenclatura astronomica per le comete, la lettera che precede l'anno indica la natura della cometa e può essere:

  • P/ indica una cometa periodica (definita a tale scopo come avente un periodo orbitale inferiore ai 200 anni o di cui sono stati osservati almeno due passaggi al perielio);
  • C/ indica una cometa non periodica (definita come ogni cometa che non è periodica in accordo alla definizione precedente);
  • D/ indica una cometa disintegrata o "persa";
  • X/ indica una cometa per cui non è stata calcolata un'orbita precisa (solitamente sono le comete storiche);
  • A/ indica un oggetto identificato erroneamente come cometa ma che è in realtà un asteroide.

Quando viene osservato un secondo passaggio al perielio di una cometa identificata come periodica, a essa viene assegnata una nuova denominazione composta da una P/, seguita da un numero progressivo dell'annuncio e dal nome degli scopritori secondo le regole precedentemente indicate. Così la Cometa di Halley, la prima cometa a essere stata individuata come periodica, presenta anche la designazione 1P/1682 Q1. Una cometa non periodica come la Cometa Hale-Bopp ha ricevuto la denominazione C/1995 O1. Le comete mantengono la denominazione asteroidale se l'hanno ricevuta prima che fosse identificata la loro natura cometaria, un esempio ne è la cometa P/2005 YQ127 (LINEAR). Ci sono solo cinque oggetti catalogati sia come asteroidi sia come comete ed essi sono: 2060 Chiron (95P/Chiron), 4015 Wilson-Harrington (107P/Wilson-Harrington), 7968 Elst-Pizarro (133P/Elst-Pizarro), 60558 Echeclus (174P/Echeclus) e 118401 LINEAR (176P/LINEAR (LINEAR 52). La questione di cosa fossero le comete, se fenomeni atmosferici od oggetti interplanetari, rimase a lungo irrisolta. Gli astronomi si limitavano a registrare la loro apparizione, ma i tentativi di spiegazione erano pure speculazioni. La svolta cominciò nel XVI secolo. In quegli anni, Tycho Brahe provò che dovevano trovarsi oltre l'orbita della Luna, e quindi ben al di fuori dell'atmosfera terrestre. L'apparizione di tre comete nel 1618 portò a una disputa fra Orazio Grassi e Galileo Galilei; per Grassi le comete erano oggetti orbitanti tra la Luna e il Sole, mentre per Galilei le comete erano addensamenti di vapori terrestri. Nel XVII secolo, Edmond Halley usò la teoria della gravitazione, da poco formulata da Isaac Newton, per calcolare l'orbita di alcune comete. Trovò che una di queste tornava periodicamente vicino al Sole ogni 76 o 77 anni. Quando questa predizione fu confermata (Halley era già morto), divenne famosa come la Cometa di Halley, e si trovò che era stata osservata ogni 76 anni fin dal 66. La seconda cometa riconosciuta come periodica fu la Cometa di Encke, nel 1821. Come la Halley, fu chiamata col nome di chi ne calcolò l'orbita, il matematico e fisico tedesco Johann Franz Encke (oggi le comete vengono in genere chiamate col nome dello scopritore). La cometa di Encke ha il periodo più breve conosciuto, poco più di 3 anni, e grazie a questo è anche la cometa della quale si registrano più apparizioni. È anche la prima cometa per la quale si notò che l'orbita era influenzata da forze non gravitazionali (vedi più sotto). Anche se adesso è troppo debole per essere osservata a occhio nudo, dev'essere stata molto luminosa qualche migliaio di anni fa, quando la sua superficie non era ancora evaporata. La sua prima apparizione registrata risale tuttavia al 1786. La vera natura delle comete rimase incerta per altri secoli. All'inizio del XIX secolo un altro matematico tedesco, Friedrich Wilhelm Bessel, era sulla strada giusta. Creò una teoria secondo la quale la luminosità di una cometa proveniva dall'evaporazione di un oggetto solido, e che le forze non gravitazionali agenti sulla cometa di Encke fossero il risultato della spinta causata dai jet di materia in evaporazione. Le sue idee furono dimenticate per più di 100 anni fino a quando Fred Lawrence Whipple, all'oscuro del lavoro di Bessel, propose la stessa teoria nel 1950. Divenne presto il modello accettato di cometa e fu in seguito confermato dalla flotta di sonde (incluse la sonda Giotto dell'ESA e le sonde Vega 1 e Vega 2 dell'Unione Sovietica) che andò incontro alla Cometa di Halley nel 1986, per fotografarne il nucleo e osservare i jet di materiale in evaporazione. La sonda americana Deep Space 1 passò accanto alla Cometa 19P/Borrelly nel 2001 e confermò che le caratteristiche della Cometa di Halley erano simili a quelle di altre comete. La missione Stardust è stata lanciata nel gennaio 1999, e ha incontrato la cometa Wild 2 nel gennaio 2004. Ha raccolto del materiale che è rientrato sulla Terra nel 2006. La missione Deep Impact è stata lanciata nel febbraio 2005, e ha colpito con un proiettile la cometa Tempel 1 il 4 luglio 2005 (alle 5:52 UTC). Il 12 novembre 2014 alle ore 17.02 il lander Philae ha completato con successo l'atterraggio sulla superficie della cometa 67P/Churyumov-Gerasimenko nell'ambito della missione Rosetta, progetto sviluppato dall'Agenzia Spaziale Europea nel 2004 per osservare i fenomeni che avvengono su una cometa nella fase di avvicinamento al perielio. Sette articoli pubblicati sulla rivista Science (Volume 314, Issue 5806, 2006) da un team di scienziati internazionali, tra i quali sette italiani, annunciano la scoperta nei grani di polvere della cometa Wild 2 di lunghe molecole organiche, di ammine precursori di quelle organiche, come il Dna. La sonda Stardust, dopo aver percorso 4,6 miliardi di chilometri in circa sette anni ha catturato un centinaio di grani ognuno piccolo meno di un millimetro. I grani sono stati catturati il 2 gennaio 2004 dalla coda della cometa Wild 2 con una speciale filtro in aerogel, una sostanza porosa dall'aspetto lattiginoso. Gli scienziati autori della scoperta, tra cui Alessandra Rotundi dell'Università Parthenope di Napoli, ritengono che questa scoperta sia la conferma della panspermia, la teoria secondo la quale molecole portate dalle comete siano alla base dell'origine della vita sulla Terra. È una teoria che nacque nei primi anni del Novecento e compatibile con le osservazioni fatte dalla sonda europea Giotto nel 1986 quando si avvicinò alla cometa di Halley. A sostegno di questa ipotesi vengono citati anche i tempi rapidi con la quale sarebbe comparsa la vita sulla Terra. Secondo i cultori di questa teoria la situazione sulla Terra sarebbe mutata radicalmente in poche decine di milioni di anni e tempi così rapidi secondo loro si possono spiegare solo con l'ipotesi che a portare gli ingredienti fondamentali alla vita siano state le comete. Rimane il fatto che nella sezione dedicata alla cometa Wild 2 è riportato che non sono stati osservati carbonati e ciò suggerisce che la polvere della cometa Wild 2 non ha subito alterazione per mezzo di acqua liquida. Ciò rende inspiegabile la presenza di ammina.

La cometa Shoemaker-Levy 9

La cometa Shoemaker-Levy 9 (formalmente designata 1993e e D/1993 F2) è divenuta famosa perché è stata la prima cometa ad essere osservata durante la sua caduta su un pianeta. Scoperta il 25 marzo 1993 dagli astronomi Eugene e Carolyn S. Shoemaker e da David Levy, analizzando lastre fotografiche dei dintorni di Giove, destò immediatamente l'interesse della comunità scientifica; non era mai accaduto infatti che una cometa fosse scoperta in orbita attorno ad un pianeta e non al Sole. Catturata tra la seconda metà degli anni sessanta ed i primi anni settanta da Giove, le interazioni tra il gigante gassoso e la cometa ne avevano causato la disgregazione in 21 frammenti. Nel 1993 si presentava all'osservatore come una lunga fila di punti luminosi immersi nella luminescenza delle loro code, indicati spesso sui giornali come "la collana di perle". Gli studi dell'orbita della cometa portarono alla conclusione che essa sarebbe precipitata sul pianeta nel luglio del 1994. Fu quindi avviata un'estesa campagna osservativa che coinvolse numerosi osservatori a Terra e diverse sonde nello spazio per la registrazione dell'evento. Tra il 16 ed il 22 luglio del 1994, i frammenti della cometa caddero su Giove in un vero e proprio bombardamento. Le macchie scure che si formarono sul pianeta furono osservabili dalla Terra per diversi mesi prima di essere riassorbite dall'atmosfera di Giove. L'evento ebbe una rilevanza mediatica considerevole, ma contribuì notevolmente anche alle conoscenze scientifiche sul Sistema solare. In particolare, permise di effettuare misurazioni sugli strati profondi dell'atmosfera gioviana, normalmente inaccessibili, e sottolineò il ruolo svolto da Giove nel ridurre i detriti spaziali presenti nel Sistema solare interno. La cometa fu scoperta nella notte del 24 marzo 1993 dagli Shoemaker e da Levy in una fotografia ripresa con il telescopio Schmidt da 0,4 metri al Mount Palomar Observatory in California, mentre conducevano un programma di osservazioni dedicato alla rilevazione di oggetti near-Earth. A differenza di tutte le altre comete scoperte prima di allora, la Shoemaker-Levy 9 era in orbita attorno a Giove invece che attorno al Sole. La serendipica scoperta della cometa mise velocemente in secondo piano gli scopi originali delle loro osservazioni. SL9 fu la nona cometa periodica (una cometa il cui periodo orbitale è inferiore a 200 anni) scoperta dalla coppia di astronomi, e la loro undicesima scoperta includendo anche due comete non periodiche. La scoperta fu annunciata nella circolare IAU 5725 del 26 marzo 1993. L'immagine della scoperta fornì i primi indizi che SL9 era una cometa insolita. Essa presentava infatti nuclei multipli contenuti in una regione allungata lunga 50 arcosecondi e larga 10. Brian Marsden del Central Bureau for Astronomical Telegrams notò che la cometa era nelle vicinanze del pianeta gigante e suggerì che potesse essere stata frammentata dalla gravità gioviana. Gli studi orbitali della cometa appena scoperta rivelarono che essa orbitava attorno a Giove completando una rivoluzione ogni 2 anni e percorrendo un'orbita caratterizzata da un apogiovio di 0,33 UA (49×106 km) e da un'eccentricità piuttosto elevata, pari a 0,9986. La cometa aveva già completato diverse orbite attorno a Giove prima di essere rilevata. Gli studi condotti sulla sua orbita rivelarono infatti che era stata catturata dal pianeta all'inizio degli anni settanta o a metà degli anni sessanta, mentre era in orbita attorno al Sole. Prima di allora era probabilmente una cometa di breve periodo con un afelio appena all'interno dell'orbita di Giove e un perielio interno alla fascia di asteroidi. Furono individuate anche alcune immagini precedenti alla scoperta, tra cui quelle del 15 marzo di Kin Endate, del 17 marzo di S. Otomo e del 19 marzo di Eleanor Francis Helin. Non furono trovate immagini risalenti ad un periodo precedente al mese di marzo del 1993. Il volume di spazio all'interno del quale si può dire che un corpo è in orbita attorno a Giove è definito dalla sfera di Hill (o sfera di Roche) di Giove. Quando, nell'anno della sua cattura, la cometa transitò nei pressi del gigante gassoso, si trovò leggermente all'interno della sfera di Hill del pianeta e probabilmente in un tratto dell'orbita in prossimità dell'afelio, cioè in corrispondenza del quale il movimento relativo della cometa rispetto a Giove era molto piccolo. L'attrazione gravitazionale esercitata da Giove fu quindi sufficiente a mutare l'orbita della cometa da un'orbita intorno al Sole ad una molto eccentrica attorno al gigante gassoso. Il 7 luglio 1992 passò ad una distanza minima di 40000 km dalle nubi gioviane, molto all'interno dell'orbita di Metis e del limite di Roche del pianeta, dove le forze di marea sono sufficientemente intense da disintegrare un corpo celeste tenuto insieme dalla sola forza di gravità. Sebbene la cometa fosse già transitata nelle vicinanze di Giove precedentemente, l'incontro del 7 luglio fu il più vicino e gli studiosi ritengono che possa essere stato quello in cui il nucleo della cometa si frantumò. Ad ogni frammento fu assegnata una lettera dell'alfabeto identificativa (dalla A alla W), secondo una prassi già adottata precedentemente. Gli astronomi, in base ai dati orbitali, dedussero che la cometa sarebbe passata a meno di 45000 km dal centro di Giove (una distanza inferiore al raggio del pianeta) nel luglio del 1994; c'era quindi un'altissima probabilità che la cometa sarebbe entrata in collisione con il gigante gassoso. Gli studi suggerirono inoltre che la sequenza degli impatti del gruppo di frammenti sarebbe durata circa 5 giorni. La previsione della collisione galvanizzò la comunità scientifica, che non aveva mai assistito allo spettacolo offerto dalla collisione tra due corpi significativi del sistema solare. Furono condotti studi accurati della cometa e, quando la sua orbita fu determinata con precisione, la possibilità di collisione divenne certezza. Questo evento avrebbe costituito un'opportunità unica per osservare l'atmosfera di Giove: la collisione avrebbe provocato eruzioni di materiali provenienti da strati atmosferici profondi, normalmente preclusi all'osservazione. Gli astronomi stimarono che i frammenti visibili della cometa variavano da qualche centinaio di metri fino al massimo di due chilometri, suggerendo che il nucleo cometario originario potesse aver raggiunto i 5 km di diametro, più grande di quello della cometa Hyakutake. Nel dibattito che precedette le collisioni, una delle principali controversie riguardava le capacità di osservazione dalla Terra; alcuni ritenevano impossibile vedere le conseguenze degli impatti, ma solo la manifestazione luminosa che si sarebbe verificata nel momento in cui i frammenti sarebbero bruciati nell'atmosfera, come gigantesche meteore. Altri suggerirono che in conseguenza degli impatti il pianeta sarebbe stato attraversato da una serie di onde gravitazionali, che l'aumento del quantitativo di polvere avrebbe determinato un aumento della foschia stratosferica ed infine un incremento della massa del sistema di anelli di Giove. All'avvicinarsi della data prevista per l'impatto, crebbe la trepidazione nella comunità scientifica e non. Molti telescopi a Terra e diversi osservatori spaziali furono puntati verso Giove, tra questi ultimi: il Telescopio spaziale Hubble, il satellite ROSAT e la sonda Galileo, che era in rotta per un rendezvous con il pianeta previsto per il 1995. Gli impatti avvennero nel lato del pianeta opposto alla Terra, ma la sonda Galileo fu in grado di osservarli direttamente da una distanza di 1,6 UA. La rapida rotazione di Giove rese i siti degli impatti visibili dalla Terra qualche minuto dopo l'evento.[18] Per l'occasione, altre due sonde in missione nello spazio profondo furono puntate verso Giove: la Ulysses a 2,6 UA di distanza dal pianeta, progettata principalmente per lo studio del Sole, e la Voyager 2, in quel momento a 44 UA da Giove e diretta verso l'esterno del sistema solare dopo aver sorvolato Nettuno nel 1989, che fu programmata per registrare le emissioni radio nelle frequenze tra 1 e 390 kHz. Il primo impatto avvenne alle 20:13 UTC del 16 luglio 1994, quando il frammento A del nucleo colpì l'emisfero meridionale del pianeta ad una velocità di 60 km/s.[6] Gli strumenti a bordo della sonda Galileo rilevarono una palla di fuoco che raggiunse la temperatura di 24000 K, prima di espandersi e raffreddarsi a 1500 K in circa 40 secondi. Il pennacchio raggiunse una altezza di circa 1000 km. Dopo qualche minuto gli strumenti misurarono un nuovo aumento di temperatura, probabilmente causato dai materiali espulsi che ricadevano verso il pianeta. Gli osservatori a terra individuarono la palla di fuoco mentre si sollevava dal bordo del pianeta poco dopo l'impatto iniziale. Gli effetti oltrepassarono le previsioni degli astronomi: molti osservatori videro subito dopo il primo impatto un'enorme macchia scura, visibile anche con piccoli telescopi, di dimensioni pari a 6000 km (valore prossimo a quello del raggio terrestre). Tale macchia e quelle che si formarono in seguito agli impatti successivi presentavano una forma marcatamente asimmetrica, con un semianello più spesso nella direzione opposta rispetto a quella di impatto. Gli studiosi ritennero che esse fossero composte principalmente dai detriti. Nei successivi sei giorni, vennero osservati altri 21 impatti, il maggiore dei quali avvenne il 18 luglio alle 7:33 UTC e fu causato dalla collisione del frammento G. Questo evento creò un'enorme macchia scura con dimensioni di 12000 km, e sprigionò l'energia stimata equivalente a 6 milioni di megaton (circa 750 volte l'energia dell'intero arsenale nucleare mondiale). Il 19 luglio due impatti, separati da un periodo di 12 ore, crearono degli effetti simili a quelli del frammento G. L'ultimo frammento, contrassegnato con la lettera W, colpì Giove il 22 luglio. Gli osservatori speravano che gli impatti avrebbero fornito dettagli sugli strati di Giove al di sotto delle nuvole più superficiali, dal momento che i materiali in profondità sarebbero stati esposti dai frammenti di cometa in caduta attraverso l'atmosfera superiore. Le osservazioni spettroscopiche dei siti d'impatto rivelarono le linee di assorbimento caratteristiche dello zolfo biatomico (S2) e del disolfuro di carbonio (CS2): fu la prima volta che questi composti furono rilevati su Giove e solo la seconda che lo zolfo biatomico fosse rivelato in un corpo celeste diverso dalla Terra. Furono individuati ammoniaca (NH3) ed acido solfidrico (H2S). Le quantità di zolfo rilevate erano molto superiori a quelle contenute in un piccolo nucleo cometario; fu quindi ipotizzato che questi materiali provenissero effettivamente dall'interno del pianeta. Con grande sorpresa degli astronomi, non furono rilevati composti di zolfo ed ossigeno, come ad esempio l'anidride solforosa (SO2). Oltre a queste molecole, furono identificate emissioni di atomi pesanti come ferro, magnesio e silicio, in quantità corrispondenti a quelle presenti nei nuclei cometari. Sebbene fossero rilevate quantità significative di acqua, esse furono inferiori alle aspettative, quindi o l'ipotetico strato di acqua gioviano è più sottile del previsto, oppure i frammenti di cometa non hanno raggiunto una profondità sufficiente. Come era stato previsto, le collisioni generarono enormi onde di gravità che viaggiarono attraverso il pianeta ad una velocità di 450 m/s e che furono osservate per più di due ore dopo l'impatto. Alcuni studiosi ritengono che tali onde si fossero propagate attraverso uno strato stabile, che ha funzionato come una guida d'onda, posto in corrispondenza dell'ipotetico strato troposferico delle nubi d'acqua. Tuttavia, le spettrografie sembrano indicare che i frammenti non avrebbero raggiunto lo strato d'acqua e le onde allora potrebbero essersi propagate all'interno della stratosfera.[28] Le osservazioni radio rilevarono un netto incremento delle emissioni ad una lunghezza d'onda di 21 cm dopo l'impatto principale, che raggiunse il 120% del normale livello di emissione del pianeta. Si pensa che siano state dovute alla radiazione di sincrotrone generata dall'immissione di elettroni relativistici - elettroni con velocità prossime a quella della luce - nella magnetosfera gioviana. Un'ora dopo la collisione del frammento K, gli osservatori registrarono un'aurora nei pressi del sito di impatto, e nella zona diametralmente opposta, valutata rispetto al campo magnetico di Giove. La causa di queste emissioni fu difficile da stabilire, essendo limitate le conoscenze del campo magnetico interno del pianeta e della geometria dei siti di impatto. Le onde d'urto in accelerazione verso l'alto potrebbero aver accelerato a sufficienza le particelle cariche da provocare un'aurora, un fenomeno tipicamente associato alle particelle veloci del vento solare che colpiscono l'atmosfera di un pianeta nei pressi di un polo magnetico. Alcuni astronomi hanno suggerito che gli impatti possano aver avuto effetti notevoli anche sul toro ionico presente attorno a Giove in corrispondenza dell'orbita di Io. Tuttavia, studi spettroscopici a risoluzione elevata rilevarono, durante gli impatti e nel periodo seguente, variazioni entro la norma nella densità degli ioni, nella velocità di rotazione e nelle temperature. Una delle sorprese dell'impatto fu rappresentata dalle minori quantità d'acqua rilevate rispetto alle aspettative. Prima dell'impatto, i modelli dell'atmosfera gioviana indicavano che la disintegrazione dei frammenti più grandi sarebbe avvenuta a pressioni comprese tra 30 kPa e qualche MPa (da 0,3 a qualche decina di bar). Alcuni prevedevano che i frammenti del nucleo cometario sarebbero penetrati fino ad uno strato interno ricco d'acqua e che un velo bluastro avrebbe coperto la regione interessata dagli impatti. I successivi studi non rilevarono grandi quantitativi d'acqua e suggerirono che la frammentazione e la distruzione dei frammenti cometari fossero avvenute ad altezze probabilmente maggiori rispetto al previsto. Anche il frammento più grande potrebbe essere stato distrutto quando la pressione raggiunse i 250 kPa (2,5 bar), molto sopra all'ipotetico strato d'acqua. I frammenti minori furono probabilmente distrutti addirittura prima di raggiungere lo strato delle nubi. I segni lasciati dall'evento rimasero visibili a lungo e furono descritti come più visibili della famosa Grande Macchia Rossa. Probabilmente furono i fenomeni transitori più importanti mai osservati sul pianeta, e mentre la Grande Macchia Rossa risalta per il suo colore, non fu mai registrata alcuna macchia di dimensioni e colori simili a quelle provocate dalla cometa. Le osservazioni spettroscopiche mostrarono che l'ammoniaca e il solfuro di carbonio rimasero nell'atmosfera almeno per quattordici mesi dopo l'evento, con un eccesso di ammoniaca nella stratosfera (normalmente l'ammoniaca è presente invece nella troposfera). La temperatura atmosferica tornò ai livelli normali molto più velocemente nei punti di impatto maggiori rispetto a quelli minori. Nei primi, infatti, le temperature aumentarono in una regione ampia da 15000 a 20000 km, ma scesero a valori normali entro una settimana dall'evento. Nei punti più piccoli, temperature di 10 K superiori rispetto ai siti circostanti persistettero invece per almeno due settimane. Le temperature della stratosfera aumentarono immediatamente dopo gli impatti, per scendere due o tre settimane dopo a valori di temperatura inferiori rispetto alla situazione precedente agli impatti. Soltanto in seguito tornarono lentamente a valori normali. La cometa Shoemaker-Levy 9 non è l'unica ad aver orbitato per qualche tempo attorno a Giove; da studi condotti sulle orbite di numerose comete periodiche, si è potuto dedurre che almeno altre tre comete (82P/Gehrels, 111P/Helin-Roman-Crockett e 147P/Kushida-Muramatsu) sono state temporaneamente catturate dal pianeta (sebbene non siano state osservate se non in orbita attorno al Sole). Gli studi hanno confermato che Giove, il maggiore pianeta del sistema solare, è in grado di catturare frequentemente comete in orbita attorno al Sole. In genere, le comete in orbita attorno a Giove seguono orbite instabili poiché altamente ellittiche e perturbabili dalla gravità del Sole durante il transito per l'apogiovio (il punto di massima distanza dal pianeta). In uno studio condotto nel 1997, è stato stimato che una cometa di 0,3 km di diametro cada sul pianeta una volta ogni 500 anni; mentre per una cometa di 1,6 km di diametro la frequenza scende ad una ogni 6000 anni. Gli impatti di comete delle dimensioni di SL9 sono ancora più rari. Esistono prove consistenti che alcune comete siano state frammentate e siano entrate in collisione con Giove e le sue lune. Durante le missioni Voyager sono state individuate 13 catene di crateri su Callisto e tre su Ganimede, la cui origine era inizialmente sconosciuta. Mentre le catene di crateri osservate sulla Luna spesso si irradiano da crateri maggiori e comunemente si ritiene che siano state create da impatti secondari del materiale espulso dalla collisione principale, quelle presenti sulle lune gioviane non sono collegate ad un cratere principale, ed è probabile invece che siano state create da frammenti cometari. L'evento accaduto su Giove ha evidenziato il suo ruolo di "aspirapolvere cosmico" per il sistema solare interno. Il notevole campo gravitazionale di Giove attira molte piccole comete e asteroidi rendendolo una frequente sede di impatti, da 2000 a 8000 volte più frequenti rispetto al tasso di impatti sul pianeta Terra. Senza Giove, la probabilità di impatto sui pianeti interni del sistema solare sarebbe molto più elevata. La caduta della Shoemaker-Levy 9 ha fatto riflettere sulla possibilità che eventi analoghi siano accaduti in passato e possano accadere in futuro e ha rafforzato le teorie delle estinzioni da impatto. È generalmente accettata la teoria dell'impatto di un asteroide come causa dell'estinzione dei dinosauri al termine del periodo cretacico. Alcuni astronomi hanno ipotizzato che senza l'azione di Giove queste estinzioni di massa sarebbero potute essere più frequenti sulla Terra, precludendo la possibilità di sviluppo per forme di vita complesse. Queste argomentazioni fanno parte dell'ipotesi della rarità della Terra (Rare Earth hypothesis). L'impatto dei frammenti della cometa Shoemaker-Levy 9 su Giove fu seguito con grande interesse dalla comunità scientifica, ma destò anche clamore nell'opinione pubblica. All'evento infatti fu dedicata una estesa copertura mediatica e molti ne evidenziarono la portata storica. Inoltre, alcuni aspetti della collisione poterono essere direttamente osservati da chiunque possedesse un telescopio, ed in effetti furono molto numerosi gli osservatori che puntarono in quelle sere i propri strumenti su Giove. Le collisioni della cometa Shoemaker-Levy 9 attirarono l'attenzione sui pericoli derivanti dall'impatto di una cometa o di un asteroide con il nostro pianeta. Furono espresse posizioni fra loro anche molto distanti, dal catastrofismo alla sottovalutazione del rischio. Tra le forme di comunicazione, ci fu la produzione nel 1998 dei film Deep Impact di Mimi Leder, che narra delle vicende che precedono lo schianto di una cometa sulla Terra, ed Armageddon di Michael Bay, in cui un gruppo di astronauti riesce a disgregare un asteroide prima dell'impatto sul nostro pianeta. Tra le forme espressive ispirate alla collisione, c'è la canzone Jupiter Crash, scritta nel 1996 dalla band post-punk inglese The Cure.


Crea il tuo sito web gratis! Questo sito è stato creato con Webnode. Crea il tuo sito gratuito oggi stesso! Inizia