La Terra e la Luna
La Terra è la nostra casa, la nostra partenza per l'esplorazione del Cosmo. Seguici su Eagle sera per saperne di più.
La Terra
La Terra è il terzo pianeta in ordine di distanza dal Sole e il più grande dei pianeti terrestri del sistema solare, sia per massa sia per diametro. Sulla sua superficie, si trova acqua in tutti e tre gli stati di aggregazione (solido, liquido e gassoso) e un'atmosfera composta in prevalenza da azoto e ossigeno che, insieme al campo magnetico che avvolge il pianeta, protegge la Terra dai raggi cosmici e dalle radiazioni solari. Essendo l'unico corpo planetario del sistema solare adatto a sostenere la vita come concepita e conosciuta dagli esseri umani, è l'unico luogo nel quale vivono tutte le specie viventi conosciute. La sua formazione è datata a circa 4,54 miliardi di anni fa. La Terra possiede un satellite naturale chiamato Luna la cui età, stimata analizzando alcuni campioni delle rocce più antiche, è risultata compresa tra 4,29 e 4,56 miliardi di anni. L'asse di rotazione terrestre è inclinato rispetto alla perpendicolare al piano dell'eclittica: questa inclinazione combinata con la rivoluzione della Terra intorno al Sole causa l'alternarsi delle stagioni. Le condizioni atmosferiche primordiali sono state alterate in maniera preponderante dalla presenza di forme di vita che hanno creato un diverso equilibrio ecologico plasmando la superficie del pianeta. Circa il 71% della superficie è coperta da oceani di acqua salata e il restante 29% è rappresentato dai continenti e dalle isole. La superficie esterna è suddivisa in diversi segmenti rigidi detti placche tettoniche che si spostano lungo la superficie in periodi di diversi milioni di anni. La parte interna, attiva dal punto di vista geologico, è composta da uno spesso strato relativamente solido o plastico, denominato mantello, e da un nucleo diviso a sua volta in nucleo esterno, dove si genera il campo magnetico, e nucleo interno solido, costituito principalmente da ferro e nichel. Tutto ciò che riguarda la composizione della parte interna della Terra resta comunque una teoria indiretta ovvero mancante di verifica e osservazione diretta. Importanti sono le influenze esercitate sulla Terra dallo spazio esterno. Infatti la Luna è all'origine del fenomeno delle maree, stabilizza lo spostamento dell'asse terrestre e ha lentamente modificato la lunghezza del periodo di rotazione del pianeta rallentandolo; un bombardamento di comete durante le fasi primordiali ha giocato un ruolo fondamentale nella formazione degli oceani e in un periodo successivo alcuni impatti di asteroidi hanno provocato significativi cambiamenti delle caratteristiche della superficie e ne hanno alterato la vita presente. Il simbolo astronomico della Terra è un cerchio con all'interno una croce ⊕ e occasionalmente anche ♁: la linea orizzontale rappresenta l'equatore e quella verticale un meridiano. Il termine "terra" deriva dall'omologo latino terra, che probabilmente era originariamente (materia) tersa, vale a dire secca, arida, correlata al verbo torreo presente in "torrido"; dalla radice indoeuropea tars- con il significato di essere secco, disseccarsi che trovasi nel sanscrito trsyami, nel tedesco Durst, nell'inglese thirst e nel greco τερσαίνω. Gli scienziati da secoli effettuano ricerche volte a ricostruire la storia della Terra. Secondo le ipotesi più aggiornate la Terra e gli altri pianeti del Sistema Solare si formarono 4,54 miliardi di anni fa. Inizialmente liquefatto, il pianeta gradualmente si raffreddò formando una crosta terrestre sempre più di tipo granitico, simile all'odierna. La Luna si formò subito dopo, probabilmente a causa dell'impatto tra la Terra e un protopianeta conosciuto come Theia, grande quanto Marte e avente circa il 10% della massa della Terra. Nell'urto tra i due corpi un po' della massa di questo piccolo corpo celeste si unì alla Terra e una porzione fu espulsa nello spazio e abbastanza materiale sopravvisse per formare un satellite orbitante. L'attività vulcanica, decisamente maggiore dell'odierna, produsse l'atmosfera primordiale, molto ricca di anidride carbonica. Il vapore acqueo condensandosi produsse gli oceani. Circa 3,5 miliardi di anni fa nacque la prima forma di vita.[15] Lo sviluppo della fotosintesi permise ad alcune forme di vita di assorbire l'energia solare; l'ossigeno, prodotto di scarto della fotosintesi, si accumulò nell'atmosfera e creò uno strato di ozono (una forma di ossigeno molecolare [O3]) nell'atmosfera superiore. L'incorporazione di cellule più piccole in altre di dimensioni maggiori fece sì che si sviluppassero cellule più complesse delle cellule procarioti, chiamate eucarioti.[16] Protette dallo strato di ozono che impediva ai raggi ultravioletti, dannosi per la vita, di attraversare l'atmosfera le varie forme di vita colonizzarono la superficie della Terra.s La primordiale struttura geologica di microplacche continentali andò verso una primaria aggregazione, formando dei continenti che occasionalmente si univano per formare un supercontinente. Circa 750 milioni di anni fa la Rodinia, il primo supercontinente conosciuto, cominciò a dividersi in continenti più piccoli; i continenti in seguito si riunirono per formare la Pannotia (600-540 milioni di anni fa) e finalmente la Pangea che si divise in continenti più piccoli circa 180 milioni di anni fa ponendo le basi per la situazione geografica moderna. Dal 1960 si è ipotizzato che diverse ere glaciali tra i 750 e i 580 milioni di anni fa, durante il Neoproterozoico, abbiano coperto di ghiaccio la maggior parte del pianeta. Questa ipotesi, non ancora accettata dall'intera comunità scientifica, è conosciuta con il nome di Terra a palla di neve e deve il particolare interesse al fatto che precedette l'esplosione del Cambriano, quando le forme di vita multicellulari cominciarono a proliferare. Successivamente al Cambriano, circa 530 milioni di anni fa, si sono succedute cinque estinzioni di massa. L'ultima di esse, avvenuta 65 milioni di anni fa e probabilmente causata da una collisione meteoritica, provocò l'estinzione dei dinosauri e di altri animali, tra cui le ammonoidee, ma risparmiò alcuni piccoli animali come i mammiferi che presero il sopravvento nel periodo successivo. In seguito i mammiferi si diversificarono, finché un animale africano, rassomigliante a una scimmia, guadagnò l'abilità di mantenere una posizione eretta. Questa evoluzione liberò le braccia e le mani dal compito della deambulazione, permise l'utilizzo di utensili, incoraggiò la comunicazione al fine di provvedere a una migliore nutrizione e creò i presupposti per lo sviluppo di una maggiore area cerebrale. Lo sviluppo della agricoltura, e della civiltà, permise agli esseri umani di plasmare la Terra in un tempo così breve come nessun'altra forma di vita era riuscita a fare, influenzando sia la natura, sia la quantità delle altre forme di vita. La fase recente delle ere glaciali incominciò circa 40 milioni di anni fa intensificandosi durante il Pleistocene, circa 3 milioni di anni fa. Le regioni polari sono state sottoposte a svariati cicli di glaciazioni e disgeli, succedutisi ogni 40-100 000 anni. L'ultima di queste fasi terminò 10 000 anni fa, lasciando il pianeta in una situazione morfo-climatica abbastanza stabile fino ai giorni nostri. Modelli chimici basati sull'attuale abbondanza di isotopi radioattivi con lunghissimi tempi di decadimento e l'analisi composizionale di materiale non differenziato proveniente da meteoriti e dalla Luna datano la formazione della Terra a 4,54 miliardi di anni fa. La difficoltà principale nella determinazione dell'età della Terra è legata al fatto che nessuna roccia attualmente affiorante sul pianeta presenta questa età; ciò è dovuto alla natura fluida o plastica della totalità della crosta terrestre durante il primo miliardo di anni circa. Inoltre processi di differenziazione magmatica separavano in questa prima fase i vari elementi concentrandone solo alcuni all'interno della crosta terrestre. Questo frazionamento rende difficile stabilire con esattezza il contenuto iniziale di alcuni geocronometri e pertanto non è possibile calcolare con esattezza le abbondanze iniziali. Le rocce più antiche rinvenibili sul pianeta sono rocce continentali, si ritrovano nei cratoni e hanno un'età pari a 4,1 miliardi di anni. La maggior parte della crosta oceanica è più giovane, perché continuamente riciclata dai meccanismi legati alla tettonica delle placche: le rocce più antiche in questo tipo di crosta sono giurassiche e hanno un'età di 100 milioni di anni. L'età della Terra fu determinata da Clair Patterson nel 1953 utilizzando metodi radiometrici legati al decadimento dell'uranio. La Terra è il maggiore sia per dimensione sia per massa dei quattro pianeti terrestri (insieme a Mercurio, Marte e Venere), composto per lo più da roccia e silicati; questo termine è contrapposto a quello di giganti gassosi, pianeti appartenenti al sistema solare esterno. Sempre tra i pianeti terrestri è quello con la maggiore densità, la più alta gravità e il più forte campo magnetico. La forma della Terra è simile ad uno sferoide oblato. Più precisamente si dice che sia un geoide, solido che per definizione ha la forma della Terra. Un geoide è molto simile ad un ellissoide generato dalla rotazione di un'ellisse, detto ellissoide di riferimento, attorno al proprio asse minore rispetto al quale il geoide ha uno scostamento massimo di 100 metri. Il diametro medio dell'ellissoide di riferimento è circa 12742 km, tuttavia in maniera più approssimativa si può definire come 40009 km/π, dato che il metro è stato originariamente definito come 1/10 000 000 della distanza tra l'equatore ed il polo Nord passando per Parigi.[26] La rotazione della Terra è la causa del rigonfiamento equatoriale che comporta un diametro equatoriale di 43 km maggiore di quello polare. Le maggiori deviazioni locali sulla superficie sono: il Monte Everest, con 8848 m sopra il locale livello del mare e la Fossa delle Marianne, con 10924 m sotto il locale livello marino. Se si paragona la Terra a un perfetto ellissoide essa ha una tolleranza di circa una parte su 584, o dello 0,17% che è minore dello 0,22% di tolleranza ammesso nelle palle da biliardo.[28] Inoltre a causa della presenza del rigonfiamento il luogo maggiormente distante dal centro della Terra è situato attualmente sul Monte Chimborazo in Ecuador. L'interno della Terra, detto anche geosfera, è costituito da rocce di diversa composizione e fase (solida, principalmente, ma talvolta anche liquida). Grazie allo studio dei sismogrammi si è giunti a considerare l'interno della Terra suddiviso in una serie di gusci; difatti si è notato che le onde sismiche subiscono fenomeni di rifrazione nell'attraversare il pianeta. La rifrazione consiste nella modifica della velocità e della traiettoria di un'onda quando questa si trasmette a un mezzo con differente densità. Si sono potute così rilevare superfici in profondità in cui si verificano una brusca accelerazione e una deviazione delle onde e in base a queste sono state identificate quattro zone sferiche concentriche: la crosta, il mantello, il nucleo esterno e il nucleo interno. L'interno della Terra, come quello degli altri pianeti terrestri, è diviso chimicamente in una crosta formata da rocce da basiche ad acide, un mantello ultrabasico e un nucleo terrestre composto principalmente da ferro. Il pianeta è abbastanza grande da avere un nucleo differenziato in un nucleo interno solido e un nucleo esterno liquido che produce un debole campo magnetico a causa della convezione del suo materiale elettricamente conduttivo. La capacità elettrica della Terra vale invece 710 μF, abbastanza piccola in rapporto alle sue dimensioni. Dal punto di vista delle proprietà meccaniche, la crosta e la porzione superiore del mantello formano la litosfera, rigida e una porzione intermedia del mantello, che si comporta in un certo senso come un fluido enormemente viscoso, costituisce l'astenosfera. Materiale proveniente dall'astenosfera si riversa continuamente in superficie attraverso vulcani e dorsali oceaniche non conservando però la composizione originale perché soggetto a cristallizzazione frazionata. La massa della Terra è circa di 5,98×1024 kg ovvero quasi 6000 trilioni di tonnellate. Essa aumenta nel tempo al ritmo di 107 kg/anno a causa della cattura di materiale cosmico.[31] È costituita in peso principalmente da:
- ferro (32,1%)
- ossigeno (30,1%)
- silicio (15,1%)
- magnesio (13,9%)
- zolfo (2,9%)
- nichel (1,8%)
- calcio (1,5%)
- alluminio (1,4%)
- altri elementi (1,2%)
Si ritiene che il nucleo sia costituito principalmente da ferro (88,8%) con piccole quantità di nichel (5,8%) e zolfo (4,5%). Il geochimico F. W. Clarke ha calcolato che poco più del 47% della crosta terrestre è composta da ossigeno. I costituenti più comuni sono rappresentati dagli ossidi; cloro, zolfo e fluoro sono le uniche importanti eccezioni, sebbene la loro presenza totale nelle rocce sia inferiore all'1%. Gli ossidi principali sono i silicati, gli ossidi di alluminio, di ferro, di calcio, magnesio, potassio e di sodio. I silicati sono la componente acida della crosta terrestre, costituendo tutti i principali minerali delle rocce intrusive. Analizzando 1672 campioni di tutti i tipi di rocce, Clarke ha dedotto che il 99,22% di esse erano composte da solo undici ossidi (vedere tabella a destra), mentre i rimanenti costituenti erano presenti solo in quantità veramente ridotte. La temperatura all'interno della Terra aumenta con un gradiente geotermico di circa 25 °C/km nella crosta, gradiente che poi diminuisce a 0,7 °C-0,8 °C/km nelle altre zone. La temperatura raggiunge i 5 270 K (5 000 °C) e la pressione arriva a 3600 kbar nella porzione di nucleo interno. Il calore interno è stato generato in parte durante la formazione del pianeta e da allora ulteriore calore è stato continuamente generato dal decadimento radioattivo di isotopi dell'uranio, del torio e del potassio. Il calore trasmesso dall'interno all'esterno del pianeta deriva dai moti convettivi del mantello anche se, essendo le rocce cattive conduttrici termiche, rappresenta solo un ventimillesimo dell'energia che il pianeta riceve dal Sole. La densità media della Terra è di 5,515 g/cm³, rendendolo il pianeta più denso del sistema solare. Non è costante, ma cresce all'aumentare della profondità. Nella crosta terrestre passa da 2,2 a 2,9 g/cm³ per aumentare progressivamente nel mantello, con una densità che va da 3 a 5,6 kg/dm³, fino a giungere nel nucleo a valori compresi tra i 9 e i 13,5 kg/dm³. In accordo con la Tettonica delle placche, che è oramai accettata dalla quasi totalità degli esperti in scienze della Terra, la sua zona più esterna è suddivisa in due parti: la litosfera, comprendente la crosta terrestre e la parte più superficiale del mantello superiore, e l'astenosfera che forma la parte più interna e profonda del mantello. L'astenosfera si comporta come un liquido surriscaldato che fa muovere le placche litosferiche ed è estremamente viscoso.[36] La litosfera sostanzialmente galleggia sull'astenosfera ed è suddivisa in quelle che comunemente sono chiamate placche tettoniche. Queste placche sono segmenti rigidi che si muovono le une rispetto alle altre secondo tre tipi di movimento: convergente, divergente e trasforme. Un ultimo tipo di movimento avviene quando due placche si muovono lateralmente rispetto a un'altra, attraverso una faglia strike-slip. Il pianeta è stato plasmato dagli spostamenti di queste placche, alternando momenti in cui era presente un solo super-continente a situazioni simili alla odierna. Esistono le placche litosferiche di tipo continentale e di tipo oceanico. Inoltre la collisione tra due o più placche tettoniche è la base per la genesi delle catene montuose sulla parte di placca litosferica di tipo continentale; mentre una loro divergenza può portare alla nascita di una dorsale oceanica, sulla parte di placca litosferica di tipo oceanica e quindi di nuova crosta. Pertanto i limiti tra le placche tettoniche sono zone di elevata attività geologica e di intensi sforzi e lungo di esse si concentrano la maggior parte delle aree sismiche, con terremoti anche di forte intensità, e delle aree vulcaniche. Numerose sono le placche minori o di più piccola dimensione, tra esse le principali sono: la placca indiana, la placca arabica, la placca caraibica, la placca di Nazca lungo la costa occidentale dell'America meridionale e la placca di Scotia nell'Oceano Atlantico meridionale. Le placche a movimento più rapido si trovano nelle zone oceaniche, con la placca di Cocos che si sposta a una velocità di 75 mm/anno e la placca pacifica che si sposta a una velocità di 52-69 mm/anno. All'estremo la placca con il movimento più lento è quella euroasiatica, in movimento a una velocità media di circa 21 mm/anno. La superficie terrestre può variare enormemente da luogo a luogo. Circa il 70,8% della superficie è coperta da acqua; inoltre la maggior parte della piattaforma continentale si trova al di sotto del livello marino. Nella parte sommersa del pianeta sono presenti tutte le caratteristiche tipiche di un territorio montuosso, caratteristiche comprendenti un sistema di dorsali medio oceaniche, dei vulcani sommersi, delle fosse oceaniche, dei canyon sottomarini, degli altopiani e delle piane abissali. Il rimanente 29,2% emerso consiste di montagne, deserti, pianure, altopiani e altre zone geomorfologiche minori. La superficie planetaria si modifica costantemente secondo tempi geologici a causa dei movimenti delle varie placche tettoniche e dell'erosione; inoltre le sue caratteristiche geografiche, create o deformate dai movimenti tettonici, sono sottoposte agli influssi meteorologici (pioggia, neve, ghiaccio, vento), a svariati cicli termici (gelo/disgelo delle zone alpine, elevata escursione termica giornaliera nel caso dei deserti) e all'azione chimica. Infine nel modellamento del pianeta sono compresi anche grandi eventi come glaciazioni e impatti meteorici. Durante la migrazione di due placche tettoniche continentali la crosta oceanica viene subdotta al di sotto dei margini di queste ultime. Nello stesso tempo, a causa della risalita di materiale mantellico, nuova crosta oceanica viene generata lungo margini divergenti nelle dorsali medio oceaniche. Questo ciclo sostituisce continuamente il materiale di crosta oceanica in un processo che l'ha portata ad avere un'età minore di 100 milioni di anni. La placca oceanica più antica, localizzata nel Pacifico occidentale, è stata stimata con un'età di circa 200 milioni di anni. Per comparazione la crosta continentale più antica, datata grazie alla presenza di fossili, ha un'età di circa 3 miliardi di anni. I movimenti subduttivi delle varie placche vengono regolati da contrasti di densità; infatti le placche continentali sono formate da rocce meno dense, specialmente da rocce intrusive come graniti e andesiti, mentre quelle oceaniche sono formate da rocce effusive, prevalentemente basaltiche. Questa differenza costitutiva spiega il perché nel contrasto tra due placche di tipo differente sia sempre quella oceanica ad andare in subduzione. Differente sviluppo ha il caso in cui le due placche appartengano allo stesso tipo, per cui intervengono fattori più sensibili come gli sforzi e le direzioni di movimento. Su entrambi i tipi di crosta si possono trovare, in casi favorevoli alla loro messa in posto, le rocce sedimentarie. Esse sono formate dall'accumulo di sedimenti in maniera spesso così individuabile, quando è presente una stratificazione, da poter risalire indietro nel tempo alle condizioni presenti all'atto della formazione di ogni singolo strato e all'evoluzione di queste condizioni verso il presente. Inoltre le rocce sedimentarie sono le uniche in cui possono esser ritrovati fossili, fondamentali per una datazione precisa della roccia stessa e per trarre informazioni paleoambientali su clima, geografia, fauna e sulla flora presente in quell'epoca. In queste rocce vengono ricercati e sfruttati quasi tutti i principali giacimenti di idrocarburi e carboniferi. Circa il 75% di tutta la superficie dei continenti è coperta da sedimenti, sebbene essi formino solamente circa il 5% della crosta. Il terzo tipo di roccia presente sul pianeta, dopo quelle vulcaniche intrusive ed effusive e quelle sedimentarie, è quello delle rocce metamorfiche. Esse derivano dalla trasformazione di rocce preesistenti di qualsiasi tipo attraverso l'influenza di alte pressioni, di alte temperature o di entrambe queste variabili. Il processo metamorfico può essere di varia intensità, provocando sia una semplice ricristallizzazione di alcune specie minerali verso altre maggiormente stabili, sia la parziale fusione e deformazione della roccia, trasformandola in una completamente differente. Inoltre attraverso i processi di fusione si crea una circolazione di fluidi caldi all'interno della roccia. All'interno di questi fluidi vengono portati in soluzione e concentrati, laddove presenti, elementi rari altrimenti dispersi in quantità infinitesimali. Pertanto le rocce metamorfiche o i depositi derivanti dal loro smantellamento sono uno dei luoghi preferenziali di ricerca di giacimenti di materie prime, di pietre e metalli preziosi. I minerali maggiormente abbondanti sulla superficie terrestre sono i silicati che includono principalmente: quarzo, feldspato, anfibolo, mica, pirosseno e olivina. Invece tra i minerali carbonatici i più comuni sono: calcite, aragonite e dolomite. La componente pedologica è la parte più esterna della Terra, nonché la più sottile, e riguarda il suolo e i processi che portano alla sua formazione. La pedosfera si pone come contatto tra la litosfera, l'atmosfera, l'idrosfera e la biosfera. Si calcola che la parte arabile di superficie sia il 13,31% della superficie emersa, con solo il 4,71% di essa utilizzata per colture permanenti. Quasi il 40% della terra è attualmente utilizzata per agricoltura e pastorizia, con una stima di circa 1,3 × 109 ettari (3,3 × 109 acri) a uso agricolo e 3,4 × 109 ettari (8,4 × 109 acri) di pastorizia. Il rilievo della superficie terrestre varia dal punto più basso a −418 m del Mar Morto alla massima altitudine di 8848 m della cima del Monte Everest secondo la stima del 2005; inoltre l'altezza media della superficie terrestre non sommersa dalle acque marine è di 686 m. La Terra ha un'atmosfera relativamente spessa, composta per il 78% di azoto, per il 21% di ossigeno e per l'1% di argon, più tracce di altri gas tra cui l'anidride carbonica e l'acqua. L'atmosfera separa la superficie terrestre dall'ambiente inospitale dello spazio, blocca buona parte delle radiazioni solari nocive, modera le temperature sulla superficie ed è il veicolo di trasporto del vapore acqueo e di altre sostanze gassose. I suoi vari strati, la troposfera, la stratosfera, la mesosfera, la termosfera e l'esosfera sono diversi attorno al globo e variano anche assieme alle stagioni. È proprio dell'atmosfera il fenomeno dell'effetto serra, consistente nell'assorbimento e riemissione dell'infrarosso termico da parte di alcune specie gassose. I principali gas responsabili di questo fenomeno sono il diossido di carbonio, il vapore acqueo, il metano e l'ozono. L'effetto serra, in misura adeguata, è fondamentale per la vita sul pianeta; infatti senza questo "scudo termico", la temperatura media della superficie terrestre sarebbe di circa −18 °C, incompatibile con il mantenimento dell'acqua allo stato liquido e, di conseguenza, con la vita. Al di sopra della troposfera, l'atmosfera è solitamente suddivisa in: stratosfera, mesosfera e termosfera. Ciascuna di queste zone possiede una tipica variazione della temperatura in funzione dell'altitudine. Proseguendo in altitudine, si incontra l'esosfera e successivamente la magnetosfera (dove avviene l'iterazione tra il campo magnetico terrestre e il vento solare). Una fondamentale zona per la vita presente sul pianeta è l'ozonosfera, parte della stratosfera in cui una elevata concentrazione di ozono scherma la superficie terrestre dai raggi ultravioletti. La linea di Kármán, situata a 100 km di altitudine, è comunemente usata per definire il confine tra l'atmosfera terrestre e lo spazio. A causa dell'elevata energia termica alcune molecole della parte esterna dell'atmosfera riescono ad accelerare fino a raggiungere una velocità tale che permette loro di fuggire dalla gravità del pianeta. L'effetto è che l'atmosfera è in lentissima, ma costante perdita di materia nello spazio. Dato che l'idrogeno ha un peso molecolare basso, raggiunge la sua velocità di fuga più rapidamente e più facilmente rispetto ad altre molecole, e abbandona l'atmosfera a un tasso maggiore. Per questo motivo, la Terra è in un ambiente ossidante, piuttosto che riducente, con importanti conseguenze sulla natura chimica della vita. Tuttavia l'atmosfera ricca di ossigeno riesce a preservare la maggior parte dell'idrogeno rimanente legandolo sotto forma di molecole di acqua. La magnetosfera è un fenomeno naturale, un dipolo magnetico con poli non coincidenti con quelli geografici, e non statici, e avente momento dipolare (asse) inclinato di 11,3° rispetto all'asse terrestre. Nonostante le numerose ipotesi sulla presenza di questo campo, le teorie si sono orientate verso un modello analogo a quello di una dinamo ad autoeccitazione. L'intensità del campo magnetico terrestre non è costante nel tempo, ma subisce notevoli variazioni. Esse hanno portato, nel corso delle ere geologiche, alla deriva dei poli magnetici rispetto ai continenti e a ripetuti fenomeni di inversione del campo, con scambio reciproco dei poli magnetici Nord e Sud. Il magnetismo terrestre ha una notevole importanza per la vita sulla Terra. Infatti esso si estende per svariate decine di migliaia di chilometri nello spazio, formando una zona chiamata magnetosfera, la cui presenza genera una sorta di "scudo" elettromagnetico che devia e riduce il numero di raggi cosmici che se arrivassero alla superficie del pianeta porterebbero alla sua sterilizzazione. Dall'interazione tra raggi cosmici (vento solare) e magnetosfera viene originato lo splendido fenomeno detto aurora boreale. La Terra è l'unico pianeta conosciuto ospitante la vita. Le forme di vita del pianeta compongono la biosfera. Le teorie correnti pongono la sua nascita a qualche centinaio di milioni di anni dopo la formazione del pianeta, tra 3,5 e 4 miliardi di anni fa. La biosfera è divisa in vari biomi, abitati da una popolazione di flora e fauna all'incirca simile. Sulla Terra, i biomi sono separati principalmente secondo la latitudine. I biomi a nord del circolo polare artico e a sud del circolo polare antartico sono relativamente vuoti di vita animale e vegetale, mentre quelli più popolati si trovano vicino all'equatore. La complessa interazione fra biosfera e singole forme di vita ha portato alcuni autori all'ipotesi Gaia secondo la quale la vita sulla Terra è possibile grazie al comportamento degli esseri viventi che mantengono una delicata omeostasi. Il termine "idrosfera" si riferirebbe ai soli oceani, tuttavia tecnicamente include tutti i mari interni, i laghi, i fiumi e l'acqua di falda fino a 2000 m di profondità. La Terra è l'unico pianeta del sistema solare la cui superficie ospita acqua liquida. L'acqua copre il 71% della superficie terrestre ed è suddivisa in un 97% di acqua salata e un 3% di acqua dolce, il cui 68% circa è sotto forma di ghiaccio. L'acqua suddivide il pianeta in cinque oceani e sette continenti. Il punto più profondo sotto la massa d'acqua è rappresentato dalla Fossa delle Marianne nell'oceano Pacifico con −10 911 m; mentre la profondità media degli oceani è di 3,794 m, più di cinque volte l'altezza media dei continenti. La massa stimata dell'acqua oceanica è di circa 1,35 x 1018 tonnellate, comparabili a 1/4400 dell'intera massa terrestre; essa inoltre occupa un volume di 1,386 x 109 km³. La media salina all'interno dell'acqua oceanica è di 35 g/l: tuttavia, essendo questo valore legato agli apporti esterni di acqua e all'evaporazione, può aumentare considerevolmente in bacini chiusi o diminuire in zone ad acque molto fredde. Questi sali provengono dalla diretta emissione vulcanica o dallo smantellamento chimico e fisico effettuato nel tempo a discapito delle rocce magmatiche. Le masse acquee sono, inoltre, enormi serbatoi di sostanze gassose, possiedono un'importante funzione termoregolatrice e mitigatrice del clima e sono agenti attivi dal punto di vista geomorfologico. Al loro interno vive un intero ecosistema acquatico, completo dal punto di vista della piramide alimentare e integrato con quello di superficie, nonché rivelatosi fondamentale per lo sviluppo umano passato e presente. La presenza di acqua liquida sulla superficie terrestre è una combinazione delle giuste caratteristiche orbitali, del vulcanismo, della gravità, dell'effetto serra, del campo magnetico e dell'atmosfera ricca di ossigeno. Ci sono varie ipotesi che Europa, un satellite di Giove, ospiti dell'acqua liquida sotto lo strato di ghiacci che ricopre interamente la superficie. La Terra è in effetti oltre il bordo esterno delle orbite che permetterebbero a un pianeta di essere abbastanza caldo per formare acqua liquida. Senza una qualche forma di effetto serra, l'acqua della Terra congelerebbe. Alcuni reperti paleontologici sembrano indicare che in un tempo precedente i 650 milioni di anni fa l'effetto serra si ridusse a tal punto da portare alla formazione della cosiddetta Terra a palla di neve; comunque questa ipotesi non è accettata da tutti i paleontologi, alcuni dei quali contestano le prove riportate e la possibilità che questo fenomeno possa verificarsi. Sugli altri pianeti, come Venere, l'acqua gassosa è dissociata dagli ultravioletti solari, e l'idrogeno è ionizzato e soffiato via dal vento solare. L'effetto è lento, ma inesorabile. Si pensa che questa sia la causa della mancanza d'acqua di Venere. Privato dell'idrogeno, l'ossigeno reagisce con la superficie e viene inglobato in minerali solidi. Sulla Terra uno scudo di ozono assorbe la maggior parte degli ultravioletti energetici nell'alta atmosfera, riducendo questo effetto. Infine il vulcanismo, aiutato dagli effetti di marea della Luna, emette continuamente vapore d'acqua dall'interno. La tettonica delle placche della Terra ricicla il carbonio e l'acqua mediante la subduzione di zone ricche di sedimenti, convertendoli in magma ed emessi dai vulcani come anidride carbonica gassosa e vapore. Le correnti oceaniche, inoltre, sono ritenute causa di una particolare oscillazione dell'asse di rotazione terrestre, detta oscillazione di Chandler. La criosfera è la porzione di crosta terrestre coperta dall'acqua allo stato solido e che comprende le coperture ghiacciate di mari, laghi e fiumi, le coperture nevose, i ghiacciai, le regioni polari ed il suolo ghiacciato in modo temporaneo o perenne (permafrost). È una parte integrante del sistema climatico globale con importanti connessioni e retroazioni generate attraverso la sua influenza sulla radiazione solare assorbita dalla superficie, sui flussi di umidità, sulle nuvole, sulle precipitazioni, sull'idrologia e sulla circolazione atmosferica ed termoalina. La Terra ruota da ovest verso est una volta al giorno, inteso come giorno siderale, attorno all'asse che unisce il polo Nord al polo Sud in 23 ore, 56 minuti e 4,091 secondi. È per questo che il sole e tutte le stelle sorgono a est e tramontano a ovest compiendo un movimento nel cielo a una velocità di circa 15°/h o 15'/min. Inoltre la Terra ruota attorno al Sole a una distanza media di 150 000 000 km in un anno siderale. La sua velocità di orbita è di circa 30 km/s (108 000 km/h), veloce abbastanza da coprire il diametro del pianeta (circa 12 600 km) in 7 minuti e la distanza dalla Luna (384 000 km) in 4 ore. Ha un satellite naturale, la Luna, che le gira attorno in 27,32 giorni. Visti dal polo Nord terrestre tutti questi movimenti si svolgono in senso antiorario. I piani dei movimenti non sono precisamente allineati: l'asse della Terra è inclinato di 23,5 gradi rispetto alla perpendicolare del piano Terra-Sole e il piano Terra-Luna è inclinato di cinque gradi, cosa che impedisce il verificarsi di due eclissi (una solare e una lunare) ogni mese e le rende invece un evento raro. Sempre a causa dell'inclinazione dell'asse terrestre, la posizione del Sole nel cielo e l'incidenza delle sue radiazioni vista da un osservatore posto sulla superficie varia nel corso dell'anno. Ad esempio un osservatore posto a una latitudine settentrionale, quando il polo Nord è inclinato verso il Sole, noterà dei periodi di luce giornaliera più lunghi e un clima più temperato, mentre disporrà di meno ore di luce e di un clima più rigido nel caso opposto. Al di sopra dei due circoli polari si raggiunge il caso estremo di alternanza di lunghi periodi di assenza di luce (chiamati notti polari), a periodi di non tramonto del Sole. Questa relazione tra il clima e l'inclinazione dell'asse terrestre viene definita tramite le quattro stagioni. Esse, dal punto di vista astronomico, sono determinate dai solstizi (i punti di massima inclinazione verso e contro il Sole) e dagli equinozi (punti in cui l'inclinazione è perpendicolare alla direzione del Sole). Il solstizio invernale cade il 21 dicembre, quello estivo il 21 giugno; mentre i due equinozi cadono, quello primaverile il 20 marzo e quello autunnale il 23 settembre. L'alternanza delle stagioni è opposta da un emisfero terrestre all'altro, data l'opposta inclinazione dell'asse, comportando ad esempio, la presenza in quello nord dell'estate e in quello sud dell'inverno. L'angolo di inclinazione è relativamente stabile se considerato su lunghi periodi, tuttavia esso compie un lento e irregolare moto (conosciuto come nutazione), con un periodo di 18,6 anni. L'orientazione dell'asse varia secondo una precessione intorno a un cerchio completo in un ciclo di poco più di 25 800 anni. La presenza di una precessione è la causa dello sfasamento tra un anno siderale e un anno tropico. Entrambe le variazioni del movimento dell'asse derivano dalla mutevole attrazione del Sole e della Luna sulla parte equatoriale del pianeta. Anche la velocità di rotazione del pianeta non è costante, ma varia nel tempo secondo un fenomeno noto come "variazione della lunghezza del giorno".[61] In tempi moderni il perielio cade il 3 gennaio, mentre l'afelio circa il 4 luglio (per informazioni circa altre ere, controlla precessione e cicli di Milanković). La differenza in termini energetici ricevuti dal Sole tra la posizione di perielio e quella di afelio è del 6,9% a favore del primo; inoltre dal momento in cui l'emisfero meridionale è orientato verso il Sole, a quello in cui il pianeta raggiunge il punto di perielio, questo emisfero percepisce una leggera maggiore energia rispetto all'emisfero nord durante l'intero anno. Questa differenza, seppure presente, è decisamente poco significativa rispetto all'energia totale derivante dal cambiamento di orientazione dell'asse, e, nella sua parte maggiore, viene assorbita e compensata dalla più alta presenza di masse acquee dell'emisfero meridionale. La sfera di Hill (sfera gravitazionale di influenza) della Terra è di circa 1,5 Gm (1 496 620 km circa) di raggio. Questa è la massima distanza a cui l'influenza gravitazionale del pianeta è più forte di quella solare e dei pianeti. Gli oggetti in orbita attorno alla Terra devono rimanere all'interno di questo raggio in ogni punto della loro orbita per non venire strappati alla presa gravitazionale della Terra ed essere immessi in un'orbita eliocentrica: la sfera di Hill cambia leggermente di dimensioni lungo l'orbita della Terra aumentando gradualmente fino all'afelio e diminuendo gradualmente fino al perielio. Poiché la Terra è molto grande, osservando dalla superficie non è immediatamente evidente che abbia forma geoidale, leggermente appiattita, schiacciata ai poli e con un lieve rigonfiamento all'equatore. Per questa ragione le antiche civiltà, come quella mesopotamica, e i primi filosofi greci, come Talete, ritennero che la Terra fosse piatta. Un primo passo verso il riconoscimento della forma reale fu compiuto da Anassimandro, che concepì la Terra come un cilindro sospeso nello spazio, immaginando quindi di avere cielo non solo sopra la propria testa ma anche al di sotto dei propri piedi. La forma sferica fu infine riconosciuta sulla base di deduzioni basate su osservazioni, quali il variare delle osservazioni astronomiche con la latitudine, l'osservazione delle eclissi di Luna e il confronto con la forma della Luna e del Sole. I Greci, circa 2500 anni fa, cominciarono per primi a sostenere che la Terra fosse una sfera. Le prime testimonianze della sfericità terrestre ci arrivano da Pitagora (VI-V secolo a.C.) e da Parmenide (V secolo a.C.); poi Aristotele (384 a.C.-322 a.C.) portò le prime dimostrazioni e infine Eratostene (274 a.C.-196 a.C.) fece le prime misurazioni. Gli studiosi del Basso Medioevo, poi, come Guglielmo di Conches, Giovanni di Sacrobosco, Ruggero Bacone, Tommaso d'Aquino, Brunetto Latini, Dante Alighieri, Giovanni Buridano e altri sostennero la sfericità del nostro pianeta con argomenti, per lo più di questo genere:
- Il Sole, a mezzogiorno, indica il sud qualunque sia il punto di osservazione: se la Terra fosse piatta, non sarebbe così;
- l'ombra proiettata dalla Terra sulla Luna, durante un'eclissi parziale, è un arco di cerchio;[65]
- la parte che per prima scompare di una nave all'orizzonte è la chiglia.
È da considerarsi infondata la moderna credenza che nel Medioevo la Terra fosse comunemente ritenuta piatta. Ancora oggi non mancano tuttavia i sostenitori della forma piatta della Terra, molti dei quali aderiscono alla Flat Earth Society (Società della Terra Piatta). L'errata supposizione della piattezza della Terra nelle civiltà più antiche, era dovuta alla mancata conoscenza della natura centrale della forza di gravità, che permette di avere il cielo sempre come alto e il centro della Terra sempre come basso e quindi superare l'apparente paradosso che si dovesse camminare con la testa rivolta verso il "basso" dall'altra parte della Terra (paradosso che però già Anassimandro aveva saputo superare). Si ritenne molto più a lungo che la Terra fosse al centro dell'universo perché si ha l'impressione che siano tutti gli altri corpi celesti a girare intorno a essa; inoltre osservando il cielo di notte si ha l'impressione che sia una volta incurvata sulla Terra, illusione dovuta all'immensità dello spazio. Anche se la teoria eliocentrica fu proposta per primo da Aristarco di Samo nel III secolo a.C., la teoria geocentrica, anche a causa della precisione di misurazione astronomica necessaria a confutarla, fu quella dominante fino alla fine del Medioevo. La Terra è l'unico pianeta del sistema solare in cui è nota la presenza di acqua alla stato liquido in superficie e in grande quantità, tanto da farle attribuire l'appellativo di "pianeta blu". Le masse d'acqua coprono circa i tre quarti della superficie totale, per un volume totale di circa 1 332 miliardi di chilometri cubi, mentre la restante parte è composta da terre emerse, sia sopra sia sotto il livello medio del mare; più precisamente:
- superficie totale: 510 065 285 km²
- superfici acquee: 361 126 222 km² (70,8%)
- terre emerse: 148 939 063 km² (29,2%)
Le masse acquee possono essere suddivise in oceani (Oceano Atlantico, Oceano Indiano, Oceano Pacifico), mari, laghi e fiumi. Quelle continentali, invece, dapprima in sette grandi continenti: America del Nord, America del Sud, Africa, Antartide, Asia, Europa e Oceania, e, successivamente, nelle loro suddivisioni in subcontinenti, macroregioni, penisole, arcipelaghi ed isole. L'atmosfera terrestre non ha limiti definiti, ma diviene lentamente sempre più rarefatta e sottile procedendo verso lo spazio esterno. Circa il 75% della sua intera massa è contenuta all'interno dei primi 11 km (circa 7 mi) a partire dalla superficie del pianeta, nello strato denominato come troposfera. L'irraggiamento solare, riscalda questa parte atmosferica, sia direttamente, sia indirettamente, tramite il calore ceduto alla superficie terrestre e provoca la dilatazione dell'aria in essa contenuta. La perdita di densità conseguente all'aumento di temperatura, pone in risalita la massa d'aria, richiamandone altra al suo posto, più fredda e densa, sia da luoghi adiacenti, sia soprastanti. Il risultato di questo processo è la circolazione atmosferica, la quale controlla, tramite la ridistribuzione dell'energia termica, sia il clima sia il tempo atmosferico. Le zone di circolazione atmosferica principali sono situate nella zona equatoriale al di sotto dei 30° di latitudine, tramite l'azione delle correnti occidentali, e nelle medie latitudini, tra i 30° e i 60°, tramite gli alisei. Inoltre le correnti oceaniche rappresentano un importante fattore di influenza sul clima; particolarmente la circolazione termoalina, che ridistribuisce l'energia termica catturata dall'acqua, dalle zone oceaniche equatoriali verso quelle polari. Il vapore acqueo generato tramite l'evaporazione superficiale della lama d'acqua per contrasto di umidità e/o temperatura con l'aria viene trasportato nell'atmosfera. In presenza di determinate condizioni atmosferiche, favorenti la risalita di aria umida e calda, il vapore acqueo presente inizia un processo di condensazione e, in seguito, dà origine a precipitazioni, che, in base alle condizioni termiche presenti nella zona atmosferica di condensa, a quelle del tragitto percorso e del suolo, potranno essere di pioggia, nevose o sotto forma di grandine. Per completare il ciclo dell'acqua, essa viene riconvogliata verso basse quote e verso gli oceani o verso i laghi in prevalenza dai corsi d'acqua. Questo processo è un meccanismo fondamentale per sostenere e sviluppare la vita, nonché il primario fattore di erosione, modellazione e trasformazione della superficie terrestre nel corso dei vari periodi geologici. L'entità delle precipitazioni varia considerevolmente da regione a regione, in base alla stagione di riferimento, alla latitudine e alla geografia del territorio, da diversi metri di acqua all'anno, a meno di un millimetro nelle zone desertiche o polari. Il clima terrestre può esser suddiviso in alcune macro regioni a clima approssimativamente omogeneo in base alla latitudine: spostandoci dall'equatore al polo si possono rilevare: una regione equatoriale, una tropicale, una subtropicale, una temperata e una regione polare. Un'altra classificazione climatica può essere basata sulle temperature e sulle precipitazioni, con una suddivisione delle regioni caratterizzate da abbastanza simili e uniformi masse d'aria. Quella maggiormente utilizzata è la classificazione climatica di Köppen (nella versione modificata dallo studente di Wladimir Köppen, Rudolph Geiger), che suddivide il mondo in cinque vaste aree: tropicale umida, area desertica arida, area umida delle medie latitudini, area a clima continentale e area di freddo polare; le quali sono poi ulteriormente suddivise in molti altri sottotipi più specifici. La Terra possiede numerose risorse naturali utili all'uso da parte del genere umano. Alcune di esse vengono definite risorse rinnovabili, ovvero che si rinnovano naturalmente o per effetto dell'uomo in quantità pressoché infinita e in tempi ridotti, purché utilizzate in maniera accurata; esse corrispondono ai suoli agricoli, ai pascoli, alle foreste e alle cosiddette fonti rinnovabili, ovvero l'energia derivante da Sole, vento, correnti marine, maree e salti d'acqua. Invece altre vengono definite come non rinnovabili, sia per l'impossibilità a rigenerarsi, sia per il lungo tempo necessario a ciò; in esse sono compresi tutti i minerali e i combustibili fossili. Le risorse si distribuiscono in differenti zone del pianeta, in particolare:
- la crosta terrestre contiene ampi depositi di combustibili fossili: carbone, petrolio, gas naturale, clatrato di metano. Questi depositi sono usati dall'uomo sia per la produzione di energia, sia come materiale di base per prodotti chimici.
All'interno della crosta sono anche contenuti i giacimenti minerari, formati per effetto dei movimenti delle placche tettoniche, o tramite lo smantellamento di catene montuose con conseguente accumulo dei minerali. In essi sono contenuti, in quantità economicamente sfruttabile, i metalli, le pietre preziose, e in forma più o meno diretta, tutti gli elementi chimici.
- la biosfera della Terra produce molti utili prodotti biologici tra cui: cibo, legno, prodotti farmacologici, ossigeno e il riciclo dei rifiuti organici. L'ecosistema del terreno dipende dall'acqua dolce e dall'humus; mentre l'ecosistema oceanico dipende da nutrienti portati nell'acqua dalle piogge e dilavati dal terreno.
Inoltre vengono utilizzati ed estratti, tutti quei materiali, utili o destinabili all'edilizia e alla costruzione di infrastrutture e oggetti, quali, ad esempio: ghiaia, argilla e pietre come il granito o l'ardesia. Per studiare l'utilizzo da parte degli esseri umani delle risorse naturali è stato ideato l'indice dell'impronta ecologica, utilizzato per misurare la richiesta umana nei confronti della natura; indice ampiamente utilizzato, sebbene non esente da critiche. Vaste aree sono sottoposte a fenomeni climatici molto violenti come i cicloni, gli uragani e i tifoni. Molte zone sono soggette a terremoti, frane, tsunami, eruzioni vulcaniche, tornado, inondazioni, siccità e altre calamità e disastri. L'attività umana, direttamente, o tramite le sostanze tossiche da lei prodotte, ha inquinato numerose zone del pianeta, comprese atmosfera e masse d'acqua. A causa di questo in diverse zone si verificano piogge acide, impoverimento e alterazione del suolo, deforestazione, estinzioni di specie viventi animali e/o vegetali, desertificazione, migrazione o scomparsa di fauna e flora autoctone, erosione e introduzione di specie invasive o alloctone. Vi è un consenso scientifico abbastanza vasto circa una correlazione tra le attività umane e il riscaldamento globale, soprattutto a causa delle emissioni di diossido di carbonio. L'effetto principale si riscontrerebbe nell'aumentata velocità dello scioglimento dei ghiacciai e della calotta polare, nell'aumento del livello medio marino, in variazioni termiche estreme e in cambiamenti significativi delle condizioni meteorologiche rispetto a quelle storicamente documentate. Dal punto di vista astronomico la Terra non è esente da rischi legati ad impatto meteoritico, di asteroidi e comete, che nel passato geologico, secondo alcune teorie e studi sperimentali, hanno segnato la storia della Terra a livello climatico, le cui tracce sono state lentamente cancellate nel tempo. La Terra ospitava approssimativamente 7,6 miliardi di esseri umani viventi nel 2017, con una maggior crescita della popolazione localizzata nei paesi in via di sviluppo. La regione dell'Africa sub-sahariana ha il più alto tasso di natalità al mondo. La densità di popolazione varia considerevolmente tra le regioni del pianeta, con una presenza maggiore nel continente asiatico. Si stima che dopo il 2020 circa il 60% della popolazione mondiale vivrà in aree urbane, contro un 40% stanziale in aree rurali. L'abitato più a nord del mondo è Alert in Canada; mentre l'abitato più a sud è la stazione di Amundsen-Scott in Antartide, situata quasi esattamente al polo sud. Pochissime persone sono in orbita intorno alla Terra a bordo della ISS (la Stazione Spaziale Internazionale), mentre altri fanno brevi viaggi sopra l'atmosfera. In totale, fino al 2004, circa 400 persone sono state al di fuori dell'atmosfera e alcune di esse hanno camminato sulla Luna. Normalmente le uniche persone nello spazio sono i componenti della Stazione Spaziale Internazionale, il cui equipaggio è solitamente composto da sei persone e sostituito ogni sei mesi. La Terra non possiede un governo planetario; tuttavia Stati indipendenti (nazioni) reclamano la sovranità su quasi la totalità della superficie planetaria, a eccezione di alcune parti dell'Antartide. Nel 2016 gli stati nel mondo includevano i 193 Stati membri delle Nazioni Unite, 59 territori indipendenti e un insieme di entità autonome, territori sotto disputa e altre entità minori. Le Nazioni Unite sono un'organizzazione internazionale creata con lo scopo di intervenire nelle dispute tra le varie nazioni, cercando di evitare conflitti armati; tuttavia, possedendo facoltà limitate, possono solo approvare e far rispettare norme di diritto internazionale e, tramite il consenso dei paesi membri, intervenire tramite sanzioni o con interventi armati. L'organizzazione funge in primo luogo da parlamento per le relazioni internazionali.
- zone contigue: 24 miglia nautiche per la maggior parte delle nazioni, con variazioni.
- piattaforma continentale: 200 metri di profondità, oppure fino alla profondità di esplorazione. Altri rivendicano 200 miglia marittime oppure fino al bordo della piattaforma continentale.
- zona di pesca esclusiva: 200 miglia marittime, con variazioni.
- zona economica esclusiva: 200 miglia marittime, con variazioni.
- acque territoriali: 12 miglia marittime, con variazioni.
- Nota: confini con stati confinanti possono impedire a molte nazioni di estendere la propria zona di pesca o economica fino a 200 miglia nautiche.
Non possiedono un accesso al mare 44 stati e altre aree, tra cui Afghanistan, Andorra, Armenia, Austria, Azerbaigian, Bielorussia, Bhutan, Bolivia, Botswana, Burkina Faso, Burundi, Repubblica Centrafricana, Ciad, Cisgiordania, Città del Vaticano, eSwatini, Etiopia, Ungheria, Kazakistan, Kirghizistan, Laos, Lesotho, Liechtenstein, Lussemburgo, Macedonia del Nord, Malawi, Mali, Moldavia, Mongolia, Nepal, Niger, Paraguay, Repubblica Ceca, Ruanda, San Marino, Slovacchia, Serbia, Sudan del Sud, Svizzera, Tagikistan, Turkmenistan, Uganda, Uzbekistan, Zambia, Zimbabwe. Il futuro del pianeta è strettamente legato a quello del Sole. Come conseguenza del processo di accumulo del gas elio all'interno del Sole, la sua luminosità tenderà ad aumentare con un ritmo stimato del 10% nel corso dei prossimi 1,1 miliardi di anni e del 40% nei prossimi 3,5. Modelli climatici indicano che l'aumento delle radiazioni che raggiungono la Terra potrebbe avere conseguenze devastanti, fino alla possibilità di perdita delle masse oceaniche. L'incremento conseguente di temperatura accelererà l'inorganico ciclo del carbonio, riducendo la sua concentrazione verso il livello letale per le piante di 10 ppm per la fotosintesi C4 in circa 900 milioni di anni. Anche se il Sole fosse infinito e stabile, il continuo raffreddamento della Terra comporterebbe comunque una consistente perdita della sua atmosfera e degli oceani (a causa della diminuita attività vulcanica) e la sua totale scomparsa dopo un altro miliardo di anni. In luce di ciò, a meno di interventi, la Terra sarà effettivamente abitabile per ancora circa 500 milioni di anni. Successivamente il sole incomincerà a espandersi, fino a raggiungere, in circa 5 miliardi di anni, le dimensioni di una gigante rossa. Secondo i modelli, esso si espanderà di circa il 99% della distanza di orbita terrestre odierna (1 unità astronomica, o UA). Tuttavia in questo periodo l'orbita terrestre si sarà già spostata di circa 1,7 UA a causa della diminuita massa solare e conseguente minore gravità. Si ritiene che il pianeta possa evitare di essere inglobato dall'aumentato volume solare verso lo spazio esterno, sebbene la maggior parte, se non la totalità, della vita presente sarà estinta. Tuttavia le più recenti simulazioni mostrano che l'orbita terrestre, a causa di effetti di marea, decadrà, causando il suo ingresso nell'atmosfera solare, con conseguente distruzione. La Terra è stata spesso personificata come una divinità, più precisamente una divinità femminile probabilmente in quanto considerata generatrice di vita, si veda ad esempio Gea (o Gaia) e Madre Terra. Nella mitologia norrena, Jǫrð, la divinità della Terra era la madre di Thor e la figlia di Nótt e Annar. La Terra è anche stata descritta come una voluminosa astronave con un sistema per il supporto vitale che richiede manutenzione. Una foto della Terra scattata dalla sonda spaziale Voyager 1 ispirò Carl Sagan nel descriverla per primo come un "puntino azzurro". Nella fantascienza la Terra è spesso la capitale o il principale centro amministrativo di un ipotetico governo galattico, specialmente quando questo governo galattico è composto per la maggior parte da umani o da loro dominato, spesso una repubblica federale rappresentativa, benché imperi e dittature non manchino affatto. Molto significative da questo punto di vista le serie televisive di fantascienza Star Trek e Babylon 5. Tuttavia in altre opere di fantascienza capita spesso che i popoli umani emigrati nello spazio in un lontano futuro non sappiano più quale sia il loro pianeta d'origine, come avviene ad esempio nel telefilm Galactica o nel Ciclo della Fondazione di Isaac Asimov. Nel libro Paria dei cieli, sempre di Asimov, si parla di una Terra radioattiva, tema che verrà ripreso in molti altri libri del Ciclo dei Robot e del Ciclo dell'Impero. Nella Guida galattica per gli autostoppisti, una serie di romanzi di Douglas Adams, la Terra è descritta come un pianeta "Praticamente innocuo". Nella stessa serie viene detto che la Terra è un supercomputer costruito da esseri altamente avanzati provenienti da un'altra dimensione per ottenere la "domanda fondamentale sulla vita, l'universo e tutto quanto".
La Luna
La Luna è un satellite naturale, l'unico della Terra. Il suo nome proprio viene talvolta utilizzato, per antonomasia e con l'iniziale minuscola («una luna»), come sinonimo di satellite anche per i corpi celesti che orbitano attorno ad altri pianeti. Orbita a una distanza media di circa 384400 km dalla Terra, sufficientemente vicina da essere osservabile a occhio nudo, così che sulla sua superficie è possibile distinguere delle macchie scure e delle macchie chiare. Le prime, dette mari, sono regioni quasi piatte coperte da rocce basaltiche e detriti di colore scuro. Le regioni lunari chiare, chiamate terre alte o altopiani, sono elevate di vari kilometri rispetto ai mari e presentano rilievi alti anche 8000-9000 metri. Essendo in rotazione sincrona rivolge sempre la stessa faccia verso la Terra e il suo lato nascosto è rimasto sconosciuto fino al periodo delle esplorazioni spaziali. Durante il suo moto orbitale, il diverso aspetto causato dall'orientazione rispetto al Sole genera delle fasi chiaramente visibili e che hanno influenzato il comportamento dell'uomo fin dall'antichità. Impersonata dai greci nella dea Selene, fu da tempo remoto considerata influente sui raccolti, le carestie e la fertilità. Condiziona la vita sulla Terra di molte specie viventi, regolandone il ciclo riproduttivo e i periodi di caccia; agisce sulle maree e la stabilità dell'asse di rotazione terrestre. Si pensa che la Luna si sia formata 4,5 miliardi di anni fa, non molto tempo dopo la nascita della Terra. Esistono diverse teorie riguardo alla sua formazione; la più accreditata è che si sia formata dall'aggregazione dei detriti rimasti in orbita dopo la collisione tra la Terra e un oggetto delle dimensioni di Marte chiamato Theia. Il suo simbolo astronomico ☾ è una rappresentazione stilizzata di una sua fase (compresa tra l'ultimo quarto e il novilunio visto dall'emisfero boreale, oppure tra il novilunio e il primo quarto visto dall'emisfero australe) La faccia visibile della Luna è caratterizzata dalla presenza di circa 300 000 crateri da impatto (contando quelli con un diametro di almeno 1 km). Il cratere lunare più grande è il bacino Polo Sud-Aitken, che ha un diametro di circa 2500 km, è profondo 13 km e occupa la parte meridionale della faccia nascosta. Il termine italiano "Luna" (di solito minuscolo nell'uso comune, non astronomico) deriva dal latino lūna, da un più antico *louksna, a sua volta proveniente dalla radice indoeuropea leuk- dal significato di "luce" o "luce riflessa"[13]; dalla stessa radice deriva anche l'avestico raoxšna ("la brillante"), e altre forme nelle lingue baltiche, slave, nell'armeno e nel tocario; paralleli semantici si possono trovare nel sanscrito chandramā ("luna"[15], considerata come una divinità) e nel greco antico σελήνη selḗnē (da σέλας sélas, "fulgore" [del fuoco], "splendore"), esempi che mantengono il significato di "lucente", sebbene siano di diversi etimi. Nelle lingue germaniche il nome della Luna deriva dal proto-germanico *mēnōn, assimilato probabilmente dal greco antico μήν e dal latino mensis che derivavano dalla comune radice indoeuropea *me(n)ses, dal chiaro significato odierno di mese. Da *mēnōn derivò probabilmente quello anglosassone mōna, mutato successivamente in mone attorno al dodicesimo secolo, quindi nell'odierno moon. L'attuale termine tedesco Mond è etimologicamente strettamente correlato a quello di Monat (mese) e si riferisce al periodo delle sue fasi lunari.
Storia delle osservazioni
Nei tempi antichi non erano rare le culture, prevalentemente nomadi, che ritenevano che la Luna morisse ogni notte, scendendo nel mondo delle ombre; altre culture pensavano che la Luna inseguisse il Sole (o viceversa). Ai tempi di Pitagora, come enunciava la scuola pitagorica, veniva considerata un pianeta. Uno dei primi sviluppi dell'astronomia fu la comprensione dei cicli lunari. Già nel V secolo a.C. gli astronomi babilonesi registrarono i cicli di ripetizione (saros) delle eclissi lunari e gli astronomi indiani descrissero i moti di elongazione della Luna. Successivamente fu spiegata la forma apparente della Luna, le fasi, e la causa della Luna piena. Anassagora affermò per primo, nel 428 a.C., che Sole e Luna fossero delle rocce sferiche, con il primo a emettere luce che la seconda riflette. Sebbene i cinesi della dinastia Han credessero che la Luna avesse un'energia di tipo Ki, la loro teoria ammetteva che la luce della Luna fosse solo un riflesso di quella del Sole. Jing Fang, vissuto tra il 78 e il 37 a.C., notò anche che la Luna avesse una certa sfericità. Nel secondo secolo dopo Cristo, Luciano scrisse un racconto dove gli eroi viaggiavano fino alla Luna scoprendo che era disabitata. Nel 499, l'astronomo indiano Aryabhata menzionò nella sua opera Aryabhatiya che la causa della brillantezza della Luna è proprio la riflessione della luce solare. All'inizio del Medioevo alcuni credevano che la Luna fosse una sfera perfettamente liscia, come sosteneva la teoria aristotelica, e altri che vi si trovassero oceani (a tutt'oggi il termine «mare» è impiegato per designare le regioni più scure della superficie lunare). Il fisico Alhazen a cavallo dell'anno 1000, scoprì che la luce solare non è riflessa dalla Luna come uno specchio, ma è riflessa dalla superficie in tutte le direzioni. Quando, nel 1609, Galileo puntò il suo telescopio sulla Luna, scoprì che la sua superficie non era liscia, bensì corrugata e composta da vallate, monti alti più di 8000 m e crateri. La stima dell'elevazione dei rilievi lunari fu oggetto di una brillante intuizione matematica: sfruttando la conoscenza del diametro lunare ed osservando la distanza delle vette montuose dal terminatore, l'astronomo toscano ne calcolò efficacemente l'altitudine; misurazioni moderne hanno confermato la presenza di monti che, avendo origine differente da quelli terrestri, data la minor gravità lunare, giungono ad 8 km di elevazione (il punto più alto misura 10750 m rispetto alla quota media). Ancora agli inizi del Novecento c'erano dubbi sulla possibilità che la Luna potesse avere un'atmosfera respirabile. L'astronomo Alfonso Fresa, ponendosi il problema dell'abitabilità della Luna, la legava inscindibilmente alla presenza dell'acqua e dell'aria:
«Innanzitutto bisogna intendersi sul significato della parola vita, la quale, se va intesa nel senso organico, molto difficilmente potrà ancora albergare sulla Luna, giacché mancano lassù i fattori necessari alla sua esistenza: l'aria e l'acqua. Si potrebbe obiettare che un'assenza completa di esse non debba essere presa alla lettera, perché pur non verificandosi nemmeno in piccolissima parte i fenomeni di rifrazione, un residuo sparutissimo di aria può esistere sul nostro satellite, per quanto anche l'analisi spettroscopica abbia confermato che il nostro satellite è completamente privo di atmosfera.»
Osservazione dalla Terra e esplorazione
La Luna è l'unico oggetto del cielo di cui è possibile osservare dei dettagli superficiali ad occhio nudo. Il nostro satellite infatti mostra una serie di dettagli chiari e scuri, determinati dalla differenza di albedo tra le zone pianeggianti, dette mari - più scure - e le zone più elevate, craterizzate e più chiare. Nel corso di circa un mese essa mostra diverse fasi lunari, caratterizzate da un diverso aspetto e da una conseguente variazione di luminosità. In prossimità della Luna nuova, quando è presente solo un piccolo spicchio illuminato, è possibile osservare la luce cinerea. La luminosità massima della Luna piena è di circa -12 di magnitudine apparente, mentre il semidiametro angolare alla distanza media dalla Terra, secondo Simon Newcomb, è di 0,25905°. Già con un binocolo la Luna mostra moltissimi dettagli come i mari e i crateri. L'osservazione in questo caso risulta particolarmente suggestiva a causa della visione a largo campo. Le fasi lunari descrivono il diverso aspetto che la Luna mostra verso la Terra durante il suo moto, causate a loro volta dal suo diverso orientamento rispetto al Sole. Le fasi lunari si ripetono in un intervallo di tempo detto "mese sinodico", pari a circa 29 giorni. Il mese del nostro calendario gregoriano è derivato da esso. Le fasi lunari sono dovute al moto di rivoluzione della Luna e al suo conseguente ciclico cambiamento di posizione rispetto alla Terra e al Sole. Sono rappresentate dalla parte del satellite terrestre illuminata dal Sole. Vi sono quattro posizioni fondamentali, rappresentate nella figura a lato e nell'elenco sottostante dai numeri dispari, e quattro fasi intermedie:
- Luna nuova (o congiunzione o fase di novilunio)
- Luna crescente
- Luna piena (o opposizione o fase di plenilunio)
- Luna calante
Il termine "quarto" si riferisce alla posizione della Luna nell'orbita attorno alla Terra, da tali due posizioni dalla Terra è visibile mezzo emisfero. Per un osservatore posto nel emisfero boreale, quando la Luna è crescente, la parte illuminata del disco lunare è a destra, mentre quando è calante la parte illuminata è a sinistra. Mentre nell'emisfero australe avviene il contrario: quando è crescente è illuminata la parte sinistra, quando è calante è illuminata la parte destra[1]. La transizione da un emisfero all'altro provoca quindi il fenomeno della "Luna a barchetta" (si veda nei proverbi più sotto). È importante preporre che le fasi lunari, in ambito astronomico, sono calcolate e sempre riferite in termini di geocentricità cioè per un ipotetico osservatore collocato al centro della Terra. Per il calcolo delle fasi lunari si possono impiegare delle specifiche formule chiuse, come quelle proposte in tempi recenti dal matematico Jean Meeus e perfettamente idonee ad essere informatizzate, oppure in modo più semplice e, volendo, rigoroso, tramite un comune calcolo iterativo che interpola da una funzione di secondo grado gli istanti (o tempi) nei quali la differenza, in valore assoluto, fra la longitudine apparente del Sole e quella della Luna raggiunge i seguenti angoli:
- 0° a Luna Nuova
- 270° al primo Quarto
- 180° a Luna Piena
- 90° all'ultimo Quarto
Nonostante l'impiego di formule notevolmente più semplici e brevi, il metodo iterativo ha lo svantaggio di richiedere necessariamente la conoscenza della longitudine apparente del Sole e della Luna, mentre invece non è necessaria applicando un metodo a formula chiusa. Nella pratica, onde evitare di rendere impossibile il calcolo in taluni computer, si preferisce imporre una tolleranza "cautelare", nei valori sopra riportati, di circa 1 milionesimo di grado in più o in meno rispetto ai valori angolari indicati.
- Con la Luna nuova, la Luna è interposta fra la Terra e il Sole: sorge al mattino e tramonta alla sera. Se si allinea in prossimità del nodo con la Terra e il Sole si ha un'eclissi solare.
- Nelle quadrature o quarti (primo quarto e ultimo quarto), le semirette congiungenti la Terra con la Luna e il Sole formano un angolo di 90°: al primo quarto la Luna sorge a mezzogiorno e tramonta a mezzanotte, all'ultimo quarto sorge a mezzanotte e tramonta a mezzogiorno.
- Con la Luna piena la posizione della Terra è compresa tra Sole e Luna: la Luna sorge alla sera e tramonta al mattino. Se invece si allinea dietro l'ombra della Terra si ha un'eclissi lunare.
- Congiunzione ed opposizione vengono denominate sizigie.
La Luna compie una rivoluzione attorno alla Terra in 27 giorni, 7 ore, 43 minuti e 11 secondi (mese siderale). Il mese lunare (ovvero il periodo compreso fra due Lune nuove) ha invece una durata media di 29 giorni, 12 ore, 44 minuti e 3 secondi. La differenza è dovuta al fatto che nel frattempo sia la Terra che la Luna sono avanzate lungo l'orbita terrestre ed il loro allineamento col Sole è cambiato. Tale differenza non è costante principalmente perché nel corso dell'anno la velocità della Terra lungo la sua orbita varia in dipendenza della distanza Terra-Sole. Ci si potrebbe aspettare che una volta al mese, quando la Luna passa tra la Terra e il Sole nel corso di una luna nuova, la sua ombra cada sulla Terra causando una eclissi solare, ma questo non accade ogni mese. E neppure è vero che durante ogni Luna piena, l'ombra della Terra cade sulla Luna, causando una eclissi lunare. Eclissi solari e lunari non sono osservate ogni mese, perché il piano dell'orbita della Luna attorno alla Terra è inclinato di circa 5° 9' rispetto al piano dell'orbita della Terra attorno al Sole (il piano dell'eclittica ). Così, quando si verificano lune nuove e piene, la Luna di solito si trova a nord o a sud della retta che passa per la Terra e il Sole. Quando durante la sua orbita, la Luna si frappone tra la Terra e il Sole, proietta un cono d'ombra sulla Terra detto eclissi solare, o più propriamente eclissi solare totale, sempre che la Luna sia a una distanza dalla Terra tale da farla apparire di diametro angolare lievemente maggiore di quello del Sole, in caso contrario, l'eclissi sarebbe solo anulare, poiché il cono d'ombra della Luna non raggiunge la superficie terrestre. Il fenomeno è ben visibile dalla Terra perché il Sole viene letteralmente oscurato per alcuni minuti durante il giorno. L'evento non è comune e non accade a ogni novilunio: occorre infatti che la precessione del piano dell'orbita lunare sia tale che l'asse nodale coincida con la direzione Terra-Sole al novilunio. Leggeri scostamenti di quest'asse possono provocare uno stato di oscurità non totale proiettando solo la penombra della Luna sulla Terra e in questo caso il fenomeno si chiama eclissi solare parziale; in questi casi dalla Terra il Sole è visto come una mezzaluna e la sua luminosità è parzialmente ridotta. Pur essendo diverse eclissi consecutive, esse si ripetono ogni circa 18 anni in quello che si chiama ciclo di Saros; dopo ogni ciclo, la posizione relativa di Sole, Terra e Luna si ripresenta uguale a prima, e quindi anche le eclissi. Da un punto di vista scientifico le eclissi solari rappresentano un'ottima opportunità per studiare la corona solare, invisibile normalmente per via della eccessiva luminosità del Sole. Un altro fenomeno interessante si ha quando la Terra proietta la sua ombra sulla Luna, che accade quando l'asse nodale dell'orbita lunare coincide con la direzione Terra-Sole al plenilunio, ed è chiamato eclissi lunare. La Luna piena perde improvvisamente di luminosità non appena entra nella penombra terrestre, per poi oscurarsi del tutto appena entra nel cono d'ombra. A differenza dell'eclissi solare, l'eclissi lunare può durare alcune ore, per via della differenza di grandezza dei corpi che proiettano l'ombra. Nel 270 a.C. Aristarco di Samo sfruttò un'eclissi lunare per calcolare il diametro della Luna. A volte capita di vedere la Luna che, nel momento in cui sorge, possiede un colore rossastro. Ciò avviene poiché la sua luce (che proviene dal Sole e che è reindirizzata sulla Terra) deve attraversare uno strato atmosferico più ampio rispetto a quello che trova nel momento in cui è più alta nel cielo; la radiazione luminosa deve pertanto oltrepassare una quantità maggiore di polveri e turbolenze dell'aria ed è soggetta a una maggiore diffusione. Tale azione è più efficace con i raggi a frequenze più elevate, di colore blu, e meno con quelli a frequenze più basse, di colore rosso (scattering di Rayleigh): quindi poiché la componente rossa della sua luce non viene dispersa e arriva diretta ai nostri occhi, noi vediamo la Luna di colore rosso. Il fenomeno della Luna rossa, per questi stessi motivi, si verifica anche durante le eclissi lunari totali. Essendo la Luna il secondo corpo celeste più luminoso dopo il Sole, la sua localizzazione è particolarmente semplice. Tuttavia, la sua eccessiva luminosità crea problemi per l'osservazione con un telescopio amatoriale, in quanto la sua immagine è troppo brillante anche a 50X di ingrandimento, quasi accecante. Si usano particolari filtri astronomici, in particolare filtri a densità neutra per ridurre la luminosità per aumentare l'ingrandimento e apprezzare la visione dei rilievi sulla superficie. Particolarmente interessante è l'osservazione presso il terminatore che permette di apprezzare i rilievi grazie alla lunga ombra proiettata sulla superficie , che risulta limpida per l'assenza di atmosfera. L'esplorazione della Luna è avvenuta sia attraverso sonde robotiche, sia direttamente tramite equipaggi umani. La prima missione per l'esplorazione della Luna è stata la sonda Luna 1 lanciata dall'Unione Sovietica nel 1959 nell'ambito del Programma Luna. La missione eseguì un sorvolo ravvicinato del satellite, ma "mancò" la superficie, obiettivo che venne raggiunto il 14 settembre 1959 dalla successiva Luna 2. Nell'ottobre del 1959 la sonda sovietica Luna 3 ottenne la prima immagine della faccia nascosta. Sempre all'Unione Sovietica spetta il primato del primo lander (Luna 9, 1966) e del primo orbiter (Luna 10, 1966). Gli Stati Uniti risposero con i Programmi Pioneer e Ranger e, grazie al Programma Apollo, riuscirono con l'Apollo 11 a compiere il 20 luglio 1969 il primo atterraggio umano sulla superficie della Luna. Durante le missioni Apollo furono raccolti e portati sulla Terra 381,7 kg di campioni del suolo e delle rocce lunari. Nonostante il successo delle missioni Apollo, l'interesse dell'opinione pubblica statunitense per l'esplorazione lunare calò notevolmente e ciò determinò l'interruzione anticipata del Programma Apollo e la cessazione di missioni dedicate esplicitamente all'esplorazione della Luna. Il processo di esplorazione è ripreso nel 1990 con la prima missione giapponese, Hiten, seguita nel 1994 dalla statunitense Clementine. Proprio l'individuazione di possibili tracce di ghiaccio d'acqua in prossimità dei poli lunari da parte di quest'ultima ha generato un rinnovato interesse per la Luna che negli anni duemila ha condotto al lancio di missioni lunari da parte delle agenzie spaziali statunitense, europea, giapponese, cinese ed indiana. La Cina, la Russia e gli Stati Uniti, inoltre, hanno reso noto di voler riportare un equipaggio umano sulla superficie lunare e di valutare l'opportunità di stabilirvi una base di ricerca permanente. L'esplorazione della Luna ebbe inizio nel 1959, quando la sonda sovietica Luna 2 impattò con la superficie lunare. Nello stesso anno, il 7 ottobre, la missione Luna 3 trasmise a Terra fotografie dell'allora mai vista faccia nascosta della Luna. Fu l'inizio di una serie decennale di esplorazioni lunari condotte da sonde automatiche. In risposta al programma sovietico di esplorazione spaziale, il presidente degli Stati Uniti d'America John F. Kennedy dichiarò al Congresso il 25 maggio 1961: "io credo che questa nazione debba impegnarsi per raggiungere entro la fine del decennio l'obiettivo di portare un uomo sulla Luna e riportarlo sulla Terra". Nello stesso anno le autorità sovietiche annunciano pubblicamente la volontà di portare un equipaggio sulla Luna e di installarvi una base. Nel 1962 John DeNike e Stanley Zahn pubblicarono la loro idea di una base sotto la superficie del Mare della Tranquillità. Una base per un equipaggio di 21 uomini posta a quattro metri di profondità, in modo da essere protetta dalle radiazioni solari in maniera analoga a come la Terra è protetta dall'atmosfera. Sostenevano inoltre la scelta dei reattori nucleari come fonte di energia perché più efficienti dei pannelli solari e funzionanti anche durante le lunghe notti lunari. Anch'essi prevedevano il ricorso a purificatori d'aria basati sulle alghe. L'esplorazione della superficie da parte di esseri umani ebbe inizio con la missione Apollo 8, che nel 1968 orbitò attorno alla Luna con tre astronauti a bordo. Era la prima volta che occhi umani vedevano direttamente la faccia nascosta del satellite. L'anno successivo il modulo Apollo 11 portò sulla superficie due astronauti, dimostrando la possibilità umana di viaggiare fino alla Luna, eseguire attività di ricerca e ritornare con campioni di suolo lunare. I primi esseri umani atterrarono sulla Luna il 20 luglio 1969. Era l'apice della corsa allo spazio, la gara tra URSS e Stati Uniti d'America ispirata dalla guerra fredda. Il primo astronauta a camminare sulla superficie lunare fu lo statunitense Neil Armstrong, comandante dell'Apollo 11. L'ultimo sarebbe stato, poco più di tre anni più tardi, lo statunitense Eugene Cernan, durante la missione Apollo 17, il 14 dicembre 1972. L'equipaggio dell'Apollo 11 lasciò una targa di acciaio inossidabile, per commemorare lo sbarco e lasciare informazioni sulla visita ad ogni altro essere, umano o meno, che la trovi. Sulla targa c'è scritto:
«Qui, uomini dal pianeta Terra posero piede sulla Luna per la prima volta, luglio 1969 DC
Siamo venuti in pace, per tutta l'umanità.»
La targa raffigura i due emisferi del pianeta Terra, ed è firmata dai tre astronauti e dall'allora presidente degli Stati Uniti Richard Nixon. Le missioni successive proseguirono questa fase di esplorazione. Apollo 12 allunò vicino alla nave Surveyor 3 dimostrando la fattibilità di allunaggi di precisione. Dopo il quasi disastro dell'Apollo 13, la missione Apollo 14 fu l'ultima in cui gli astronauti rimasero in quarantena al loro rientro. La missione Apollo 15 fece uso di rover lunari e Apollo 16 fece il primo allunaggio sugli altopiani della Luna. In totale gli sbarchi sulla Luna delle missioni Apollo furono 6 (Apollo 11, 12, 14, 15, 16 e 17), per un totale di 12 astronauti discesi sul nostro satellite; la missione Apollo 13 non atterrò sulla Luna a causa di un incidente durante il volo e le restanti previste missioni Apollo 18, 19 e 20 furono annullate per tagli di bilancio. Dopo gli sbarchi del Programma Apollo, nessun essere umano ha più camminato sulla Luna. L'interesse per l'esplorazione della Luna iniziava a calare presso il pubblico statunitense. Apollo 17 fu l'ultima missione, le successive vennero annullate dal presidente Nixon. L'attenzione si volse sullo Space Shuttle e sulle missioni con equipaggio nelle orbite basse. In risposta a questo cambio di direzione anche l'Unione Sovietica iniziò a lavorare ad un progetto di shuttle, benché negli anni settanta portò a termine il Programma Luna con due rover automatici Lunochod che portarono sulla Luna varie strumentazioni e tre sonde spaziali che riportarono a Terra campioni di suolo lunare. La fine del programma lunare sovietico giunse infine nel 1976. Nei decenni successivi l'interesse per l'esplorazione lunare è calato considerevolmente, lasciando solo pochi entusiasti a sostenere un ritorno. La missione giapponese Hiten, lanciata nel 1990, è stata la prima appositamente dedicata all'esplorazione dalla conclusione del Programma Apollo nel 1972. In seguito alla individuazione di alcuni indizi sulla possibile presenza d'acqua in prossimità dei poli lunari (Clementine, NASA, 1994), negli anni 1990 e nei successivi anni 2000 è rinato un rinnovato interesse per l'esplorazione lunare. La NASA nel 1998 ha lanciato la missione Lunar Prospector che avrebbe dovuto, tra le altre cose, confermare le osservazioni della sonda Clementine, tuttavia la missione non riuscì a dare una risposta definitiva. Nel 2003 l'Agenzia Spaziale Europea ha lanciato la sonda SMART-1, la prima sonda europea per l'esplorazione della Luna. Missione prevalentemente tecnologica, ideata per testare la tecnologia del motore a ioni che avrebbe dovuto essere utilizzato nella missione BepiColombo, ha effettuato una ricognizione completa della superficie lunare, anche nei raggi X, e si è conclusa il 3 settembre 2006 con uno schianto controllato sulla superficie. L'Agenzia Spaziale Giapponese ha lanciato il 14 settembre 2007 la sua seconda missione lunare, SELENE (Selenological and Engineering Explorer) o Kaguya, come è stata ribattezzata subito dopo il lancio. La missione ha dato un notevole contributo nella mappatura delle anomalie gravitazionali della Luna, grazie all'utilizzo di due piccoli satelliti che hanno affiancato l'orbiter principale. Nel frattempo, la Cina ha espresso il proprio interesse all'esplorazione del satellite e l'intenzione di voler costruire una base sulla Luna. Gli Stati Uniti hanno allora risposto agli annunci del programma lunare cinese con l'intenzione di tornare con un equipaggio umano sulla Luna entro il 2020 e di realizzare sul lungo termine una base stanziale che faccia da trampolino per raggiungere Marte. La Cina ha iniziato il suo programma di esplorazione lunare per studiare il satellite e investigare le potenzialità di estrazione dell'elio-3, una possibile sorgente energetica per la Terra[5]. L'orbiter Chanh'e 1 è stato lanciato il 24 ottobre 2007. La missione ha avuto molto successo ed è stata estesa di ulteriori quattro mesi. La sonda è stata fatta impattare deliberatamente sulla superficie lunare. Il 1 ottobre 2010 è stato lanciato l'orbiter Chang'e 2, e tre anni più tardi la missione Chang'e 3 ha fatto atterrare nei pressi della regione Sinus Iridum il rover Yutu, il primo oggetto a compiere un atterraggio morbido lunare dalla sonda Luna 24 nel 1976. Il lander Chang'e 4, inizialmente progettato come sonda di riserva in caso di fallimento del predecessore, è stato destinato all'esplorazione della faccia nascosta della Luna, dove è atterrato con successo il 3 gennaio 2019, nei pressi del cratere Von Kármán. Il lander ha rilasciato sulla superficie il rover Yutu-2. La missione Chang'e 5, lanciata a novembre 2020 e costituita da un lander, un orbiter e un modulo di ascesa, ha prelevato e riportato sulla Terra con successo circa 2 kg di rocce lunari. L'agenzia spaziale indiana ha lanciato il 22 ottobre 2008 l'orbiter lunare Chandrayaan-1. La missione, della durata prevista di due anni, consisteva nel creare una mappa lunare tridimensionale e condurre una mappatura chimica e mineralogica della superficie e rilasciare la sonda Moon Impact Probe che è impattata sulla superficie il 14 novembre. Tra le varie scoperte scientifiche, la sonda ha confermato la presenza di molecole d'acqua nel suolo lunare. La missione successiva Chandrayaan-2 è stata lanciata il 22 luglio 2019 ed era costituita da un orbiter, un lander e il rover Pragyan. L'atterraggio del lander e del rover è fallito a causa di un malfunzionamento. Nel 2009 la NASA ha lanciato la missione Lunar Reconnaissance Orbiter, che ha creato una mappa tridimensionale ad alta risoluzione della superficie e ha trasportato la sonda da impatto LCROSS. L'impatto, avvenuto il 9 ottobre 2009 nei pressi del cratere Cabeo, ha permesso di studiare i detriti sollevati dalla collisione, e ha fornito ulteriori evidenze della presenza di acqua. Nel 2011, la missione GRAIL ha portato in orbita lunare due sonde per misurare le anomalie del campo gravitazionale lunare e desumere informazioni sulla composizione della crosta e del mantello. La missione si è conclusa nel 2012. La sonda israeliana Beresheet, un dimostratore tecnologico di un lander che sarebbe dovuto essere la prima sonda finanziata privatamente a raggiungere la Luna, ha tuttavia fallito l'atterraggio l'11 aprile 2019. Nel 2015 l'Agenzia spaziale russa ha previsto di mandare nuovamente l'uomo sulla Luna nel 2030 per installarvi una base permanente.
Formazione della Lun a
Sono state proposte diverse ipotesi per spiegare la formazione della Luna che, in base alla datazione isotopica dei campioni lunari portati a Terra dagli astronauti, risale a 4,527 ± 0,010 miliardi di anni fa, cioè circa 50 milioni di anni dopo la formazione del sistema solare. Storicamente sono state avanzate diverse ipotesi sulla formazione della Luna. Le prime teorie suggerirono che la Luna si sarebbe originata dalla Terra, staccandosi per fissione dalla sua crosta per effetto della forza centrifuga o di un'immensa esplosione, nella zona delle Filippine, fossa delle Marianne (Oceano Pacifico). Questa teoria, nota come teoria della fissione, richiederebbe però un valore iniziale troppo elevato per la rotazione terrestre e non è compatibile con l'età relativamente giovane della crosta oceanica. (età giovane a causa della teoria dell'espansione degli oceani di Harry Hess). Questa teoria è compatibile con i più moderni studi sugli isotopi lunari, che hanno valori molto simili agli isotopi della crosta terrestre e con il fatto che si è recentemente scoperto che le rocce lunari hanno molecole d'acqua legate. Un'altra teoria, detta della cattura, ipotizza invece che la Luna si sia formata in un'altra zona del sistema solare e che sia stata in seguito catturata dall'attrazione gravitazionale terrestre. Un corpo esterno per poter esser catturato in un'orbita stabile ha bisogno di un fattore determinante per il dissipamento dell'energia al momento della sua fase di avvicinamento. Spesso in sistemi più complessi, con già altri elementi di massa rilevante in orbita, questo avviene grazie alla perturbazione gravitazionale di altri satelliti. Il sistema Terra-Luna potrebbe catturare altri asteroidi che si potrebbero posizionare in un'orbita stabile, ma gli effetti gravitazionali terrestri non basterebbero, ci sarebbe bisogno della perturbazione della Luna in un momento preciso della cattura; la Luna non potrebbe essere quindi stata catturata in questo modo, a causa dell'assenza di altri satelliti. D'altro canto, sebbene l'atmosfera possa dissipare l'energia in eccesso, il perielio del satellite catturato si stabilizzerebbe ai limiti dell'atmosfera, quindi in un'orbita troppo bassa; nonostante la Luna fosse molto più vicina alla Terra nella sua orbita primordiale, questa ipotesi richiederebbe un'enorme estensione dell'atmosfera terrestre. L'ipotesi dell'accrescimento presuppone che la Terra e la Luna si formarono assieme nello stesso periodo a partire dal disco di accrescimento primordiale. In questa teoria la Luna si formò dai materiali che circondavano la proto-Terra, analogamente a come si formarono i pianeti attorno al Sole. Questa ipotesi tuttavia non spiega in modo soddisfacente la scarsità di ferro metallico sulla Luna. Comunque nessuna di queste teorie riesce a spiegare l'elevato momento angolare del sistema Terra-Luna. La teoria dell'impatto gigante è quella più accettata dalla comunità scientifica[7]. Fu proposta nel 1975 da William Hartmann e Donald Davis, che ipotizzarono l'impatto di un corpo delle dimensioni di Marte, chiamato Theia o Orpheus, con la Terra. Da quest'impatto, nell'orbita circumterrestre si sarebbe generato abbastanza materiale da permettere la formazione della Luna. Anche l'astronomo canadese Alastair G. W. Cameron era un convinto sostenitore di questa tesi. Inoltre, si pensa che i pianeti si siano formati attraverso un'accessione di corpi più piccoli in oggetti maggiori, ed è riconosciuto che impatti come questo potrebbero essere avvenuti anche per altri pianeti. Simulazioni dell'impatto al computer riescono a predire sia il valore del momento angolare del sistema Terra-Luna, sia la piccola dimensione del nucleo lunare. L'ipotetico corpo Theia si sarebbe formato in un punto di Lagrange relativo alla Terra, ossia in una posizione gravitazionalmente stabile lungo la stessa orbita del nostro pianeta. Qui Theia si sarebbe accresciuto progressivamente inglobando i planetesimi e i detriti che occupavano in gran numero le regioni interne del sistema solare poco dopo la sua formazione. Quando Theia crebbe fino a raggiungere la dimensione di Marte, la sua massa divenne troppo elevata per restare stabilmente nel punto di Lagrange, soprattutto considerando l'influenza di Giove nel turbare le orbite degli altri pianeti del sistema solare. In accordo con questa teoria, 34 milioni di anni dopo la formazione della Terra (circa 4533 milioni di anni fa) questo corpo colpì la Terra con un angolo obliquo, distruggendosi e proiettando nello spazio sia i suoi frammenti sia una porzione significativa del mantello terrestre. L'urto avvenne con un angolo di 45° e a una velocità di circa 4 km/s (circa 14400 km/h), ad una velocità inferiore di quella che Theia si suppone avesse nello stato di corpo orbitante (40000 km/h), e siccome i due pianeti erano ancora allo stato fuso e quindi plastici, ancora prima dello scontro fisico le forze mareali avevano iniziato a distorcerne gli stati superficiali prima ed a smembrarne la protocrosta e il protomantello poi. Sembra inoltre che quasi la totalità della massa lunare sia di derivazione dalla crosta e dal mantello della proto-Terra. La proto-Terra, colpita da Theia, avrebbe dimezzato il suo tempo di rotazione dalle originali 8 ore a 4 ore. Secondo alcuni calcoli il due per cento della massa di Theia formò un anello di detriti, mentre circa metà della sua massa si unì per formare la Luna, processo che potrebbe essersi completato nell'arco di un secolo. È anche possibile che una parte del nucleo di Theia, più pesante, sia affondata nella Terra stessa fondendosi con il nucleo originario del nostro pianeta. Si ritiene che un simile impatto avrebbe completamente sterilizzato la superficie terrestre, provocando l'evaporazione degli eventuali mari primordiali e la distruzione di ogni tipo di molecola complessa. Se mai sulla Terra fossero già all'opera processi di formazione di molecole organiche, l'impatto di Theia dovrebbe averli bruscamente interrotti. Inoltre è stato suggerito che in conseguenza dell'impatto si siano formati altri oggetti di dimensioni significative, ma comunque inferiori a quelle della Luna, che avrebbero continuato ad orbitare attorno alla Terra, magari occupando uno dei punti di Lagrange del sistema Terra-Luna. Nell'arco di un centinaio di milioni di anni al più, le azioni gravitazionali degli altri pianeti e del Sole ne avrebbero comunque destabilizzato le orbite, causandone la fuga dal sistema o delle collisioni con il pianeta o con la Luna. Uno studio pubblicato nel 2011 suggerisce che una collisione tra la Luna e uno di questi corpi minori dalle dimensioni pari ad un trentesimo di quelle lunari potrebbe aver causato le notevoli differenze in caratteristiche fisiche esistenti tra le due facce della Luna. Le simulazioni condotte suggeriscono che, se l'impatto tra i due satelliti fosse avvenuto con velocità sufficientemente bassa, non avrebbe condotto alla formazione di un cratere, ma il materiale del corpo minore si sarebbe "spalmato" sulla Luna aggiungendo alla sua superficie uno spesso strato di crosta degli altipiani che vediamo occupare la faccia nascosta della Luna, la cui crosta è spessa circa 50 km più di quella della faccia visibile. Nel 2001 la ricercatrice statunitense Robin Canup ha modificato la teoria dell'impatto gigante illustrando che la neonata Luna sarebbe stata collocata su un'orbita non stabile e sarebbe ricaduta sul pianeta. L'attuale inclinazione dell'asse di rotazione terrestre è frutto di un secondo impatto. La teoria del doppio impatto nasce perché, con un singolo impatto, non si sarebbe avuta la quantità di materia necessaria a formare la Luna, in quanto la massa del disco che si sarebbe condensata a seguito del primo impatto, sarebbe stata circa 2 volte inferiore a quella dell'attuale massa lunare. Inoltre solo parte di questo materiale era oltre il limite di Roche, quindi non si sarebbe mai potuto aggregare per formare un satellite di grosse dimensioni. Uno studio pubblicato nel 2017 ha proposto che l'impatto in seguito al quale si sarebbe formata la Luna avrebbe contribuito ad accrescere la massa terrestre ben più di quanto in precedenza ipotizzato. Gli indizi che avvalorano questa teoria derivano dalle rocce raccolte durante gli atterraggi delle missioni Apollo, che mostrarono composizioni di isotopi di ossigeno quasi uguali a quelle terrestri. Inoltre la presenza di campioni di rocce di tipo KREEP (ovvero contenenti K = potassio, REE = Terre rare (Rare Earth Elements (EN) ), P = fosforo) indicano che in un periodo anteriore una grande parte della Luna fosse in uno stato fluido e la teoria dell'impatto gigante spiega facilmente l'origine dell'energia richiesta per formare un tale oceano di lava. Esistono diverse prove che la Luna possiede un nucleo ferroso, anche se piccolo. In particolare la densità media, il momento di inerzia e l'induzione magnetica suggeriscono che deve essere circa un quarto del raggio lunare. Per confronto gli altri corpi di tipo terrestre hanno un nucleo pari a metà del raggio. La Luna si sarebbe quindi formata principalmente da materiale proveniente dal mantello terrestre e dall'oggetto che ha impattato mentre il nucleo di quest'ultimo si sarebbe unito alla Terra, spiegando in questo modo il valore del momento angolare. Gli interrogativi ancora aperti che riguardano questa ipotesi sono:
- Alcuni elementi volatili della Luna non si sono esauriti come previsto dalla teoria.
- La percentuale di ossido di ferro (FeO) della Luna implica che il materiale proto-lunare proverrebbe da una piccola frazione del mantello terrestre;
- Se il materiale proto-lunare proviene dal corpo che ha impattato, la Luna dovrebbe essere ricca di elementi siderofili, ma ne sono state rilevate quantità minime.
Uno studio del maggio 2011 condotto dalla NASA porta elementi che tendono a smentire questa ipotesi. Lo studio, eseguito su campioni vulcanici lunari solidificatisi 3,7 miliardi di anni fa e raccolti dalla missione Apollo 17 del 1972, ha permesso di misurare nel magma lunare una concentrazione d'acqua 100 volte superiore a quelle precedentemente stimate. Le rocce vulcaniche tendono a includere all'interno delle loro microstrutture cristalline alcuni elementi volatili, tra cui l'acqua, e con analisi molto sofisticate è possibile ricavare la quantità d'acqua presente nel suolo lunare. Secondo la teoria dell'impatto l'acqua dovrebbe essersi dissolta quasi completamente durante l'impatto, mentre dai dati qui ricavati la quantità d'acqua stimata è simile a quella presente nella crosta terrestre. Studi successivi hanno evidenziato come quest'acqua fosse distribuita e la sua ipotetica origine, portando ad analizzare in modo più dettagliato le rocce lunarie andando ad ipotizzare come la Luna sia composta per un 50% da Theia.
Parametri orbitali, evoluzione e caratteristiche fisiche
Rispetto alle stelle fisse, la Luna completa un'orbita attorno alla Terra in media ogni 27,321661 giorni, pari a 27 giorni, 7 ore, 43 minuti e 12 secondi (mese siderale). Il suo periodo tropicale medio, calcolato da equinozio a equinozio, è invece di 27,321582 giorni, pari a 27 giorni, 7 ore, 43 minuti e 4,7 secondi. Un osservatore sulla Terra conta circa 29,5 giorni tra una nuova luna e la successiva, per via del contemporaneo movimento di rivoluzione del pianeta. Più esattamente il periodo sinodico medio tra due congiunzioni solari è di 29,530589 giorni, cioè 29 giorni, 12 ore, 44 minuti e 2,9 secondi. In un'ora, la Luna percorre sulla sfera celeste circa mezzo grado, distanza all'incirca pari alla sua dimensione apparente[90]. Nel suo moto, rimane sempre confinata in una regione del cielo indicata come lo Zodiaco, che si estende circa 8 gradi sopra e sotto l'eclittica, linea che la Luna attraversa (da Nord a Sud o viceversa) ogni 2 settimane circa. La Terra e la Luna orbitano attorno a un centro di massa comune, che si trova a una distanza di circa 4700 km dal centro della Terra. Poiché questo centro si trova dentro alla massa terrestre il moto della Terra è meglio descritto come un'oscillazione. Viste dal Polo nord della Terra l'orbita della Luna attorno alla Terra e l'orbita di questa attorno al Sole avvengono tutte in senso antiorario. Il sistema Terra-Luna non può essere considerato un pianeta doppio perché il centro di gravità del sistema Terra-Luna non è esterno al pianeta, ma è localizzato 1700 km al di sotto della superficie terrestre, circa un quarto del raggio terrestre. A differenza di quanto accade per gli altri satelliti naturali del sistema solare, la Luna è eccezionalmente grande rispetto al pianeta attorno a cui orbita. Infatti, il suo diametro e la sua massa sono pari rispettivamente a un quarto e a 1/81 di quelli terrestri. Nel sistema solare, solo Caronte nel confronto con Plutone ha dimensioni proporzionalmente maggiori, avendo una massa pari all'11,6% di quella del pianeta nano. Satelliti di dimensioni confrontabili con quelle della Luna orbitano attorno ai giganti gassosi (Giove e Saturno), mentre i pianeti più affini alla Terra o non hanno satelliti (Venere e Mercurio) o ne hanno di minuscoli (Marte). Il piano dell'orbita lunare è inclinato di 5°8' rispetto a quello dell'orbita della Terra intorno al Sole (il piano dell'eclittica). Le perturbazioni gravitazionali del Sole impongono all'orbita lunare un moto di precessione, in senso orario, con periodo di 18,6 anni; questo movimento è correlato alle nutazioni terrestri, che possiedono infatti lo stesso periodo. I punti in cui l'orbita lunare interseca l'eclittica sono chiamati nodi lunari. Le eclissi solari accadono quando un nodo coincide con una luna nuova, le eclissi lunari quando un nodo coincide con una luna piena. Il moto di rotazione della Luna è il movimento che compie intorno all'asse lunare nello stesso senso della rotazione terrestre, da Ovest verso Est, con una velocità angolare di 13° al giorno. La durata è quindi uguale a quella del moto di rivoluzione pari a 27 giorni, 7 ore, 43 minuti e 11,6 secondi. Poiché il periodo di rotazione della Luna è esattamente uguale al suo periodo orbitale, dalla superficie della Terra è visibile sempre la stessa faccia del satellite. Questa sincronia è il risultato dell'attrito mareale causato dalla Terra che ha rallentato la rotazione della Luna nella sua storia iniziale. Dato che il moto di rivoluzione attorno alla Terra non è perfettamente circolare, velocità di rotazione e distanza dalla Terra variano leggermente durante un'orbita e i moti di rotazione e rivoluzione presentano degli sfasamenti tali da creare oscillazioni apparenti di lieve entità nel moto di rotazione lunare dette librazioni; anche la precessione del piano dell'orbita contribuisce, sebbene in misura minore, alle oscillazioni di librazione. Questi sfasamenti consentono ad alcune zone delle superficie lunare di essere visibili per alcuni intervalli di tempo da un osservatore a Terra. Oltre a questo, si aggiunge anche una leggera oscillazione diurna apparente dovuta al moto dell'osservatore sulla superficie terrestre: il medesimo osservatore vedrà la Luna sotto un'angolazione diversa dal momento in cui essa sorge dall'orizzonte al momento in cui tramonta a causa dello spostamento del punto di osservazione dovuto alla rotazione terrestre. Come conseguenza di tutti questi fattori, dalla Terra è osservabile un po' più della metà della superficie lunare (circa il 59%). Il successo dell'esperimento Lunar Laser Ranging, a seguito delle missioni Apollo e Lunochod, ha permesso di rivelare con precisione millimetrica la distanza tra la Terra e la Luna e di misurare l'effettivo allontanamento dei due corpi nel corso degli anni. La Luna si allontana infatti di 3,8 centimetri all'anno. L'allontanamento progressivo della Luna dalla Terra è dovuto alle forze di marea esercitate dal satellite sul pianeta. Le masse d'acqua oceaniche presenti sulla Terra vengono attratte dalla Luna e si protendono nella direzione Terra-Luna, con un leggero disallineamento a causa del periodo di rotazione terrestre inferiore al periodo di rivoluzione lunare. L'attrazione che la Luna esercita su questo lobo di marea ha una componente nella direzione opposta alla rotazione terrestre. Questa azione comporta un rallentamento del momento angolare terrestre, mentre la sua reazione incrementa il momento angolare della Luna con un suo conseguente e progressivo trasferimento su un'orbita a quota più elevata. Da notare che, sebbene la Luna venga accelerata, la velocità del suo moto diminuisce a causa dell'aumento della quota dell'orbita. Subito dopo la formazione, la Luna si trovava a una distanza molto più ravvicinata di adesso. La sua orbita era a circa 25000 km e il periodo di rotazione della Terra era di circa 3 ore[101]. Essendo entrambi i corpi allo stato fuso e molto vicini, le forze mareali avevano un'intensità molto maggiore di quelle attuali ed erano reciproche, in quanto la Luna non era ancora in rotazione sincrona. Col passare del tempo, la Terra attraversò varie ere geologiche con una diversa conformazione del suolo: fuso, solido, con o senza oceani, con solo ghiaccio; ognuna delle conformazioni ha reazioni differenti alle forze di marea della Luna, per questo l'evoluzione nei tempi remoti del periodo di rotazione e della distanza Terra-Luna non può essere determinata con precisione. Nel passare degli anni, il giorno della Terra si è ridotto fino ad arrivare a 24 ore di oggi e la Luna si è allontanata fino a 384000 km e l'attrito mareale ne ha stabilizzato la rotazione fino a renderla sincrona con la rivoluzione. La Luna si allontana di 38 mm all'anno e la Terra rallenta la rotazione di 2,3 millisecondi ogni secolo. Il sistema Terra-Luna è l'unica coppia pianeta-satellite del sistema solare ad avere forze mareali sensibili sul pianeta. Questo è dovuto al rapporto delle masse di ben 1/81, il maggiore del sistema solare. Se oltre ai pianeti si considerano anche i pianeti nani, solo il sistema Plutone-Caronte supera questo valore, con un rapporto di masse di 1/9 che ha portato al raggiungimento dell'equilibrio mareale: il periodo di rotazione di Plutone, quello di Caronte e il periodo di rivoluzione di Caronte sono sincronizzati. Più di 4,5 miliardi di anni fa, la superficie della Luna era un oceano di magma liquido. Gli scienziati pensano che uno dei componenti delle rocce lunari detto KREEP, acronimo dell'espressione inglese K (potassio), Rare Earth Elements (terre rare), e P (fosforo), rappresenti l'ultimo resto del magma originario. Il KREEP è composto da quelli che gli scienziati chiamano "elementi incompatibili": elementi che non possono entrare a far parte delle strutture dei cristalli e che quindi rimangono inutilizzati sulla superficie del magma. Per i ricercatori, il KREEP è un marcatore utile per determinare la storia del vulcanismo lunare e tracciare la cronologia degli impatti da parte di comete e altri oggetti celesti. La crosta lunare è composta da una varietà di elementi primari: uranio, torio, potassio, ossigeno, silicio, magnesio, ferro, titanio, calcio, alluminio e idrogeno. Dai dati forniti dalla missione GRAIL sulle caratteristiche della crosta lunare, i ricercatori hanno ottenuto preziose informazioni anche sulla composizione interna del satellite, scoprendo che racchiude all'incirca la stessa percentuale di alluminio della Terra. Quando viene bombardato dai raggi cosmici, ogni elemento riemette nello spazio una sua propria radiazione particolare, sotto forma di raggi gamma. Alcuni elementi, come l'uranio, il torio e il potassio, sono radioattivi ed emettono spontaneamente raggi gamma. Quale che sia la loro causa, i raggi gamma emessi da ogni elemento sono diversi e uno spettrometro è in grado di distinguerli e appunto in questo modo è stato possibile scoprirne l'esistenza. Una mappa globale della Luna, che riporti l'abbondanza di questi elementi, non è ancora stata realizzata. Le ere geologiche della Luna vengono definite in base alla datazione di alcuni crateri che hanno avuto un effetto significativo sulla sua storia. La Luna è un corpo celeste internamente differenziato: come la Terra ha una crosta geochimicamente distinta, un mantello, la cui astenosfera è parzialmente fusa (di fatto le onde S rilevate dai sismografi non sono in grado di attraversarla), e un nucleo. La parte interna del nucleo, con un raggio di 240 km, è ricca di ferro allo stato solido ed è circondata da un guscio esterno fluido costituito principalmente da ferro liquido, con un raggio di circa 300 km. Attorno al nucleo si trova una fase parzialmente fusa con un raggio di circa 500 km. La sua composizione non è stata ancora pienamente identificata, ma si dovrebbe trattare di ferro metallico in lega con piccole quantità di zolfo e nichel; sono le analisi della variabilità della rotazione lunare a indicare che esso è almeno parzialmente fuso. Si ritiene che questa struttura si sia sviluppata attraverso una cristallizzazione frazionata dell'oceano di magma che ricopriva il satellite 4,5 miliardi di anni fa, al tempo della sua formazione. La cristallizzazione dell'oceano di magma avrebbe creato il mantello femico per precipitazione e separazione dei minerali di olivina e pirosseno; dopo che circa tre quarti del magma si erano cristallizzati, i minerali di plagioclasio, a densità più bassa, poterono galleggiare e formare la crosta superficiale. Gli ultimi liquidi a cristallizzare furono quelli che si trovarono compressi tra la crosta e il mantello, con un'elevata abbondanza di elementi scarsamente compatibili ed esotermici. A conferma di questo, la mappatura geochimica effettuata dalle sonde in orbita, mostra che la crosta è prevalentemente a base di anortosite; anche i campioni di roccia lunare della lava eruttata sulla superficie da fusioni parziali del mantello, confermano la composizione mafica del mantello, più ricco in ferro di quello terrestre. Attraverso i dati inviateci dalla missione GRAIL, le ultime stime effettuate, dimostrano invece che la crosta lunare è più sottile di quanto si pensasse, in media 32-34 km contro i 45 km delle stime precedenti. La Luna è il secondo satellite più denso del sistema solare dopo Io. Tuttavia le dimensioni del nucleo interno lunare sono piuttosto piccole in confronto alla dimensione totale del satellite, solo il 20% rispetto al circa 50% della maggioranza degli altri satelliti di tipo terrestre. La topografia della Luna è stata misurata utilizzando tecniche come l'altimetria laser e l'analisi stereoscopica delle immagini. La caratteristica topografica più rilevante è l'enorme Bacino Polo Sud-Aitken, situato sulla faccia nascosta della Luna e pertanto non direttamente visibile da noi. Si tratta di un vasto cratere da impatto di circa 2 500 km di diametro, il più grande del nostro satellite e uno dei più estesi dell'intero sistema solare. Oltre alle dimensioni, il cratere vanta anche due altri primati: con i suoi 13 km di profondità contiene il punto più basso dell'intera superficie lunare mentre la massima elevazione del satellite si trova sul suo bordo nord-est. Si ritiene che quest'area sia il risultato di un impatto obliquo che ha portato alla formazione del bacino. Anche altri grandi bacini da impatto come Mare Imbrium, Mare Serenitatis, Mare Crisium, Mare Smythii e Mare Orientale posseggono vaste depressioni e bordi molto elevati. L'emisfero nascosto della Luna ha un'elevazione media di 1,9 km più alta rispetto a quella dell'emisfero visibile.
Acqua sulla Luna, magnetismo e superficie
La Luna per gran parte della sua storia antica è stata bombardata da asteroidi e comete, queste ultime ricche d'acqua. L'energia della luce solare divide la maggior parte di quest'acqua nei suoi elementi costituenti, idrogeno e ossigeno, di cui la maggior parte si disperde immediatamente nello spazio. È stato però ipotizzato che quantità significative di acqua possano rimanere sulla Luna, in superficie, in aree perpetuamente all'ombra o inglobate nella crosta. A causa della modesta inclinazione dell'asse di rotazione lunare (solo 1,5°), alcuni dei crateri polari più profondi non ricevono mai luce dal Sole, rimanendo sempre in ombra. In accordo con i dati raccolti durante la missione Clementine, sul fondo di tali crateri potrebbero essere presenti depositi di ghiaccio d'acqua. Le successive missioni lunari hanno tentato di confermare questi risultati, senza tuttavia fornire dati definitivi. Nell'ambito del suo progetto di ritorno sulla Luna, la NASA ha deciso di finanziare il Lunar Crater Observation and Sensing Satellite. La sonda è stata progettata per osservare l'impatto dello stadio superiore del razzo vettore Centaur che l'avrebbe portata in orbita, su una regione permanentemente in ombra situata in vicinanza al Polo Sud lunare. L'impatto del razzo è avvenuto il 9 ottobre 2009, seguito quattro minuti dopo da quello della sonda che in questo modo ha attraversato il pennacchio così sollevatosi e ne ha potuto analizzare la composizione. Il 13 novembre 2009, la NASA ha annunciato che, in seguito a un'analisi preliminare dei dati raccolti durante la missione di LCROSS, è stata confermata la presenza di depositi di ghiaccio d'acqua nei pressi del Polo Sud lunare. Nello specifico sono state rilevate linee di emissione dell'acqua nello spettro, nel visibile e nell'ultravioletto, del pennacchio generato dall'impatto sulla superficie lunare dello stadio superiore del razzo che aveva portato la sonda in orbita. È stata inoltre rilevata la presenza di idrossile, prodotto dalla scissione dell'acqua investita dalla radiazione solare. L'acqua (sotto forma di ghiaccio) potrebbe in futuro essere estratta e quindi divisa in idrogeno e ossigeno da generatori a energia solare. La quantità di acqua presente sulla Luna è un fattore importante nel rendere possibile la sua colonizzazione, perché il trasporto dalla Terra sarebbe estremamente costoso. L'acqua lunare potrebbe essere contenuta al suo interno e derivare dalla sua formazione, come rileva uno studio recente (maggio 2011) condotto dalla NASA. Lo studio evidenzia che la percentuale di acqua presente nella Luna potrebbe essere simile a quella terrestre e quindi i depositi rilevati potrebbero essere stati generati dalle eruzioni magmatiche del passato. Per più di un miliardo di anni dalla sua formazione, la Luna ebbe un campo magnetico paragonabile a quello terrestre. Gran parte del calore indispensabile a mantenere fluido il nucleo esterno e il mantello era dato, in parte dal decadimento degli isotopi radioattivi, ma soprattutto dalle forze mareali esercitate dalla Terra, come accade ancor oggi per la luna gioviana Io. Le forze mareali creavano un notevole attrito - e, quindi, riscaldamento interno - negli strati interni della Luna in quanto, all'inizio della sua storia, il satellite, che continua anche oggi ad allontanarsi progressivamente dalla Terra, orbitava intorno al pianeta a una distanza molto inferiore a quella odierna, cosicché la forza gravitazionale esercitata dalla Terra era in grado anche di fondere e far rimanere allo stato fuso le rocce del mantello lunare e quelle del nucleo esterno (che sono tuttora fuse). A distanza ravvicinata, le interazioni di marea tra la Terra e la Luna avrebbero, oltretutto, fatto sì che il mantello del nostro satellite ruotasse in modo leggermente diverso da quello del suo nucleo, creando celle convettive che si mantennero fino a circa 3 miliardi d'anni or sono. Proprio questo movimento differenziale avrebbe indotto nel nucleo un rimescolamento in grado, almeno stando alle previsioni teoriche, di dar luogo a una dinamo magnetica. Il campo magnetico esterno attuale della Luna è molto debole, compreso tra uno e cento nanotesla, circa un centesimo di quello terrestre. Non si tratta di un campo magnetico dipolare globale, che richiederebbe un nucleo interno liquido, ma solo una magnetizzazione crostale, probabilmente acquisita nelle prime fasi della sua storia quando la geodinamo era ancora operativa. Parte di questo residuo di magnetizzazione potrebbe anche derivare da campi magnetici transitori generatisi durante grandi eventi di impatto attraverso l'espansione della nube plasmatica associata all'impatto in presenza di un preesistente campo magnetico ambientale. Questa ricostruzione è supportata dalla localizzazione delle grandi magnetizzazioni crostali disposte agli antipodi dei grandi bacini da impatto. Le misurazioni del campo magnetico possono dare inoltre informazioni su dimensione e conduttività elettrica del nucleo lunare, fornendo quindi dati per una migliore teoria dell'origine della Luna. Per esempio, se il nucleo contenesse una proporzione maggiore di elementi magnetici (come il ferro) rispetto a quella terrestre, la teoria della nascita per impatto perderebbe credito (anche se potrebbero esistere spiegazioni alternative per questo fatto). Sopra tutta la crosta lunare si stende uno strato esterno di roccia polverosa, chiamata regolite. Sia la crosta sia la regolite sono distribuite in modo irregolare, l'una con uno spessore da 60 a 100 chilometri, l'altra passando da 3-5 metri nei mari fino a 10-20 metri sulle alture. Gli scienziati pensano che queste asimmetrie siano sufficienti per spiegare lo spostamento del centro di massa della Luna. L'asimmetria della crosta potrebbe anche spiegare la differenza nei terreni lunari che sono formati principalmente da mari sulla faccia vicina e rocce sulla parte lontana. La Luna non possiede quella che si può definire un'atmosfera nel senso comune del termine; si può solo parlare di un velo estremamente tenue, tanto che può essere quasi assimilato al vuoto, con una massa totale di meno di 10 tonnellate. La pressione superficiale risultante è attorno a 10−15 atmosfere (0,3 nPa), variabile in funzione del giorno lunare. La sua origine è imputabile al degassamento e allo sputtering, cioè il rilascio di atomi di gas da parte delle rocce che compongono la Luna, in seguito all'impatto degli ioni portati dal vento solare. Tra gli elementi che sono stati identificati ci sono sodio, potassio (presenti anche nelle atmosfere di Mercurio e del satellite Io) generati da sputtering; elio-4, da vento solare; argon-40, radon-222 e polonio-210 da degassamento per effetto del decadimento radioattivo all'interno di crosta e mantello. Non è ben chiara l'assenza di elementi allo stato neutro (atomi o molecole) come ossigeno, azoto, carbonio e magnesio, normalmente presenti nella regolite. La presenza di vapore acqueo è stata rilevata dalla sonda indiana Chandrayaan-1 a varie latitudini, con un massimo a ~60-70 gradi; si ritiene che possa essere generato dalla sublimazione del ghiaccio d'acqua della regolite. Dopo la sublimazione, questo gas può ritornare nella regolite, sotto l'effetto della debole attrazione gravitazionale della Luna, o essere disperso nello spazio a causa sia della radiazione solare sia del campo magnetico generato dal vento solare sulle particelle ionizzate. Le missioni Apollo che hanno portato astronauti sulla Luna hanno sbarcato anche alcuni sismografi. Questi sismografi hanno funzionato per molti anni ottenendo risultati ben diversi da quelli posti sulla superficie terrestre. Pur avendo registrato qualche migliaio di terremoti l'anno, si è visto che in media l'energia liberata da essi è molto bassa e non ha quasi mai superato il secondo grado della scala Richter. L'assenza di moti crostali impedisce lo sviluppo di terremoti di alta intensità. Il suolo lunare è grigiastro e composto da regolite lunare, una roccia polverosa generata principalmente a seguito dell'impatto di meteoroidi con la superficie e dell'azione del vento solare su di essa. Varia da grana molto fine ad argilla. La superficie si presenta cosparsa di crateri, eccezion fatta per i "mari" ossia le vaste zone pianeggianti resti di antiche colate laviche, dove i crateri sono più radi. Sono in tutto 1 571 (crateri denominati) oltre a 7 066 crateri correlati con raggio non inferiore a un metro. I più grandi raggiungono un diametro anche di 240 km. Non agendo sulla Luna forze tettoniche, eruzioni vulcaniche e fenomeni sismici, sono fenomeni rari, a parte casi estremamente rari causati da impatti con meteoriti. All'equatore la temperatura può raggiungere durante il giorno un massimo di 127 °C e un minimo di -247 °C rilevata in un cratere presso il polo Nord lunare. Non essendovi atmosfera, né scorrimento superficiale di acqua, mancano i relativi fenomeni di erosione tipici della Terra. Tuttavia, il continuo bombardamento di micrometeoriti unito all'impatto dei meteoroidi e degli asteroidi costituisce una forza di erosione, che ha levigato e leviga tuttora lentamente la superficie lunare. Manca l'acqua allo stato liquido; allo stato solido è invece probabilmente presente nei crateri circumpolari. La prima sonda ad allunare è stata la sovietica Luna 2, che rimase distrutta nell'impatto. L'uomo è arrivato col programma Apollo fra il 1969 e il 1972. Il primo a mettervi piede, nella missione Apollo 11, è stato l'astronauta statunitense Neil Armstrong. L'ultima visita è del rover cinese Yutu (Coniglio di giada) della missione Chang'e-3 nel dicembre 2013.
I mari lunari
Mare (plurale maria) è un termine latino utilizzato in esogeologia per designare diverse configurazioni morfologiche presenti sulla superficie della Luna e su Titano. Il termine è stato scelto a causa del colore scuro che contraddistingue queste regioni dai territori circostanti; si tratta in verità di pianure basaltiche, originatesi da antiche eruzioni di materiale incandescente seguite all'impatto con asteroidi particolarmente massicci. La maggiore albedo delle montagne lunari (formate da rocce più antiche) è dovuta alla presenza di regolite, che riflette più luce rispetto al basalto, formatasi dall'impatto di innumerevoli micrometeoriti nel corso di centinaia di milioni di anni di storia lunare. Il 16% della superficie lunare è ricoperta da maria, più numerosi nell'emisfero rivolto verso la Terra che non sulla faccia nascosta, dove sono più piccoli e meno evidenti. La nomenclatura lunare proposta dall'Unione Astronomica Internazionale prevede, oltre ai maria, la presenza di oceani (oceanus), simili ai maria ma più grandi, e di laghi (lacus), paludi (palus) e golfi (sinus), morfologicamente analoghi ai maria, ma di dimensioni inferiori. Vi sono inoltre alcune caratteristiche di albedo di Marte il cui nome comprende il termine mare: Mare Acidalium, Mare Australe, Mare Boreum, Mare Chronium, Mare Cimmerium, Mare Erythraeum, Mare Hadriacum, Mare Serpentis, Mare Sirenum, Mare Tyrrhenum.
I crateri
I crateri lunari occupano la maggior parte della superficie della luna e sono di diversi tipi. I crateri più antichi hanno permesso la datazione dell'intenso bombardamento tardivo che ha coinvolto la Terra 4 miliardi di anni fa. Il più visibile di essi è il Cratere Tycho, ben visibile anche a occhio nudo, che prese il nome dall'astronomo Tycho Brahe; pur non essendo molto grande è datato solo 100 milioni di anni e i detriti successivi all'impatto hanno lasciato segni a raggiera con un'albedo molto elevata, che non sono stati erosi da impatti successivi come per i crateri più antichi. Altri crateri degni di nota sono i crateri Peary e Malapert, situati rispettivamente in prossimità del polo nord e sud lunare. La peculiarità di questi crateri è di avere i bordi quasi sempre illuminati dal sole e i centri al buio totale, grazie alla loro posizione esterna e alla scarsa inclinazione dell'asse lunare. Sebbene l'illuminazione media annua raggiunga un massimo di 89% ai bordi, i centri sono al 100% al buio per tutti i giorni dell'anno e non sono soggetti agli effetti del vento solare: potrebbero quindi contenere elementi volatili cristallizzati, come l'acqua, ed essere di interesse per una futura missione spaziale.
Mappa superficiale
La prima mappa della Luna risale al 3000 a.C., un'illustrazione più che una mappa vera e propria, disegnata col carbone su una tomba di Knowth in Irlanda[146]. È dal XVII secolo che gli astronomi iniziarono a mappare la faccia visibile della superficie e assegnare nomi agli elementi principali, con Leonardo, Galileo e Harriot, soprattutto dopo l'invenzione del telescopio. Molti dei mari e dei crateri hanno ricevuto una denominazione. Dal 1919, l'Unione astronomica internazionale si occupa di catalogare gli elementi della superficie lunare e assegnare loro un nome ufficiale. Oltre agli elementi sopra citati, anche altri elementi meno comuni hanno ricevuto una denominazione, come monti, catene, fossi, valli e altro ancora. Dagli anni 1970, anche agli elementi della faccia nascosta, fino ad allora sconosciuti, è stata assegnata una nomenclatura.