Multiverso e dimensioni parallele
Finora abbiamo sempre viaggiato nel cosmo, ma solo NEL NOSTRO COSMO. E' possibile che ne esistano altri? E se sì, come sono fatti? Ma soprattutto... Cos'è un Universo?
Altri articoli di cosmologia:
La cosmologia è la scienza che studia l'Universo, lo spazio stesso. Risponde a domande quali: cos'è l'Universo, come è nato, come finirà...?
Iniziamo partendo da un concetto fondamentale quando si parla di universi paralleli: l'Universo!
Universo
L'Universo è comunemente definito come il complesso che racchiude tutto lo spazio e ciò che contiene, cioè la materia e l'energia, i pianeti, le stelle, le galassie e il contenuto dello spazio intergalattico. L'osservazione scientifica dell'Universo, la cui parte osservabile ha un diametro di circa 92 miliardi di anni luce, suggerisce che esso sia stato governato dalle stesse leggi e costanti fisiche per la maggior parte della sua storia e in tutta la sua estensione osservabile, e permette inferenze sulle sue fasi iniziali. La teoria del Big Bang è il più accreditato modello cosmologico che descrive la sua nascita; si calcola che tale evento sia avvenuto, visto dalla nostra cornice temporale locale, circa 13,798 ± 0,037 miliardi di anni fa. La massima distanza teoricamente osservabile è contenuta nell'universo osservabile. Osservazioni di supernove hanno dimostrato che questo, almeno nella regione contenente l'universo osservabile, sembra espandersi a un ritmo crescente, e una serie di modelli sono sorti per prevederne il destino finale. I fisici sono incerti su che cosa abbia preceduto il Big Bang; molti si rifiutano di speculare, dubitando che si potranno mai trovare informazioni relative allo stato originario. Alcuni propongono modelli di universo ciclico, altri descrivono uno stato iniziale senza confini, da cui è emerso e si è espanso lo spaziotempo al momento del Big Bang. Alcune speculazioni teoriche sul multiverso di cosmologi e fisici ipotizzano che il nostro universo sia solo uno tra i molti che possono esistere. Il termine universo deriva dal latino universus (tutto, intero) parola composta da unus (uno) e versus (volto, avvolto. Part. pass. di vertere). La parola latina fu usata spesso da Cicerone e tardi autori latini con il senso posseduto oggi in italiano. La contrazione poetica Unvorsum, da cui deriva universus, fu usata per la prima volta da Tito Lucrezio Caro nel Libro IV (capoverso 262) del suo De rerum natura ("Sulla natura delle cose"). Secondo una particolare interpretazione, essa significherebbe "tutto ciò che ruota come uno" o "tutto ciò che viene ruotato da uno". In questo senso, essa può essere considerata come una traduzione da un'antica parola greca per l'universo, περιφορά (periforá, "circumambulazione", parola originariamente usata per descrivere il percorso del cibo, che veniva servito lungo la cerchia dei commensali). περιφορά si riferiva a uno dei primi modelli greci dell'universo, quello delle sfere celesti, che secondo Aristotele erano messe in moto, per l'appunto, da un unico "essere", il cosiddetto "Primo Mobile" o "Primo Motore". Un altro termine per "universo" nell'Antica Grecia era τὸ πᾶν (tò pán, si veda Il Tutto, Pan). Termini correlati erano materia (τὸ ὅλον, tò hólon) e luogo (τὸ κενόν, tò kenón). Altri sinonimi per universo tra i filosofi dell'antica Grecia includevano κόσμος (cosmo) e φύσις (significante Natura, e da cui deriva la parola "fisica"). Si ritrovano gli stessi sinonimi tra gli autori latini (totum, mundus, natura) e infine nel linguaggio moderno, ad esempio nelle parole tedesche Das All, Weltall, e Natur, oltre che, naturalmente, in italiano.
Definizione come "Realtà"
Più comunemente, l'universo è definito come tutto ciò che esiste fisicamente. Secondo le nostre attuali conoscenze, esso consiste allora di tre elementi fondamentali: spaziotempo, energia (che comprende quantità di moto e materia) e leggi fisiche.
Definizione dell'universo come spazio-tempo connesso
È possibile concepire spaziotempi disconnessi, esistenti ma incapaci di interagire l'uno con l'altro. Una metafora facilmente visualizzabile di ciò è un gruppo di bolle di sapone separate. Gli osservatori vivono all'interno di una "bolla" e non possono interagire con quelli in altre bolle di sapone, nemmeno in linea di principio. Secondo una terminologia comune, ciascuna "bolla" di spaziotempo è un universo, mentre il nostro particolare spaziotempo è indicato come "l'Universo", così come indichiamo la nostra luna come la "Luna". L'insieme degli spaziotempi è chiamato multiverso. In linea di principio, gli altri universi disconnessi dal nostro possono avere differenti dimensionalità e topologie spazio-temporali, forme differenti di materia ed energia, diverse leggi e costanti fisiche, ma queste sono speculazioni.
La definizione più ristretta: l'universo come realtà osservabile
Secondo una definizione ancora più restrittiva, l'universo è tutto ciò che nello spazio-tempo connesso può interagire con noi e viceversa. Secondo la teoria della Relatività generale, alcune regioni dello spazio non interagiranno mai con noi in tutta la durata dell'universo: l'espansione dello spazio causa l'allontanamento di queste regioni da noi a una velocità maggiore di quella della luce. Quelle regioni remote sono considerate esistenti e parte della realtà tanto quanto noi, ma non saremo mai in grado di interagire con loro. La regione spaziale nella quale possiamo influire e dalla quale essere influenzati è denotata come universo osservabile. Strettamente parlando, l'universo osservabile dipende dalla posizione dell'osservatore. Viaggiando, un osservatore può entrare in contatto con una regione di spazio-tempo più grande, e dunque il suo universo osservabile sarà più grande. Tuttavia nemmeno il più rapido dei viaggiatori potrebbe interagire con tutto lo spazio. In genere, per universo osservabile si intende l'universo osservabile dalla Via Lattea.
Storia delle osservazioni
Nel corso della storia registrata, diverse cosmologie e cosmogonie sono state proposte per spiegare le osservazioni sull'universo. I primi modelli quantitativi, geocentrici, sono stati sviluppati dai filosofi dell'Antica Grecia. Nel corso dei secoli, osservazioni più precise e teorie migliori sulla gravità hanno portato prima al modello eliocentrico di Niccolò Copernico, poi al modello del sistema solare di Isaac Newton. Ulteriori miglioramenti nel campo dell'astronomia hanno portato a comprendere come il Sistema Solare sia incorporato in una galassia composta da miliardi di stelle, la Via Lattea, e che esistono n miliardi di galassie più o meno simili. Studi sulla loro distribuzione e sulla loro riga spettrale hanno portato alla cosmologia moderna. Le scoperte dello spostamento verso il rosso e della radiazione cosmica di fondo hanno rivelato come l'universo si stia espandendo e che forse ha avuto un inizio. Secondo il modello scientifico prevalente dell'universo, il modello del Big Bang, l'universo si è espanso da una fase estremamente calda e densa chiamata era di Planck, in cui era concentrata tutta la materia e l'energia dell'universo osservabile. Dall'epoca di Planck, l'universo si è espanso fino alla sua forma attuale, forse con un breve periodo (meno di 10-32 secondi) di inflazione cosmica. Diverse misurazioni sperimentali indipendenti supportano questa teoria di espansione metrica dello spazio e, più in generale, la teoria del Big Bang. Osservazioni recenti indicano come questa espansione stia accelerando a causa dell'energia oscura, e come la maggior parte della materia nell'universo potrebbe essere in una forma non rilevabile dagli strumenti attuali, e quindi non conteggiata nei modelli dell'universo, ostacolando le nostre previsioni sul destino ultimo dell'universo. Questa forma di materia è stata denominata materia oscura. Il 21 marzo 2013 la guida dei team europei di ricerca riguardanti la sonda Planck ha pubblicato la più recente mappa della radiazione cosmica di fondo del cielo.La mappa suggerisce che l'universo sia un po' più vecchio di quanto si credesse. Secondo la mappa, sottili fluttuazioni di temperatura sono state impresse sul cielo profondo quando il cosmo aveva circa 370.000 anni. Tali fluttuazioni riflettono increspature sorte già nei primi 10−30 secondi. A quanto pare, queste increspature hanno dato luogo alla presente vasta struttura di superammassi di galassie e materia oscura. Secondo il team di Planck, l'universo ha circa 13,798 ± 0,037 miliardi anni di età, ed è costituito per il 4,9% di materia ordinaria, per il 26,8% di materia oscura e per il 68,3% da energia oscura. Inoltre, la costante di Hubble è stata misurata in 67,80 ± 0,77 (km/s)/Mpc. Le interpretazioni precedenti delle osservazioni astronomiche avevano indicato come l'età dell'universo fosse di 13,772 ± 0,059 miliardi di anni, (mentre il disaccoppiamento della luce e della materia, si veda CMBR, avvenne 380.000 anni dopo il Big Bang), e che il diametro dell'universo osservabile è di minimo 93 miliardi di anni luce. Secondo la relatività generale, lo spazio può espandersi con velocità maggiore di quella della luce, ma possiamo vederne solo una piccola porzione a causa delle limitazioni imposte dalla velocità della luce stessa. Dato che non è possibile effettuare osservazioni oltrepassando i limiti imposti dalla velocità della luce (e, in generale, di ogni radiazione elettromagnetica), non è possibile stabilire se le dimensioni dell'universo siano finite o infinite.
Struttura
La regione dell'Universo visibile dalla Terra (l'universo osservabile) è una sfera con un raggio di circa 46 miliardi di anni luce. Per confronto, il diametro di una Galassia tipica è di 30.000 anni luce, e la distanza tipica tra due galassie vicine è invece di 3 milioni di anni-luce. Ad esempio, la Via Lattea ha un diametro di circa 100.000 anni luce, e la galassia più vicina a noi, Andromeda, si trova approssimativamente a 2,5 milioni di anni luce da noi. Ci sono probabilmente più di 100 miliardi (1011) di galassie nell'universo osservabile, seppure l'analisi dei dati dei progetti "Hubble Deep Field" e "Hubble Ultra Deep Field" abbia portato a teorizzarne un numero compreso tra i 300 e i 500 miliardi[senza fonte]. Le galassie tipiche vanno dalle galassie nane con un minimo di dieci milioni (107) di stelle fino alle galassie giganti con mille miliardi (1012) di stelle, le quali orbitano tutte attorno al centro di massa della loro galassia. Uno studio del 2010 stima il numero di stelle dell'universo osservabile in 300.000 trilioni (3×1023), mentre uno studio del 2016 ipotizza che il numero totale di galassie nell'universo osservabile, comprese quelle troppo piccole per essere rilevate dagli attuali telescopi, sia di 2000 miliardi (2x1012). Si crede che l'universo sia per lo più composto da energia oscura e materia oscura, entrambe al momento poco conosciute. La materia ordinaria costituisce meno del 5% dell'Universo. La materia osservabile è distribuita in maniera omogenea (uniformemente) in tutto l'universo, in media su distanze di più di 300 milioni di anni luce. Tuttavia, su piccole scale di lunghezza, la materia si dispone in "grumi", raggruppandosi gerarchicamente: una gran quantità di atomi è presente nelle stelle, la maggior parte delle stelle si raggruppa in galassie, la maggior parte delle galassie in ammassi, superammassi di galassie e, infine, si hanno strutture a larga scala come la Grande muraglia. La materia osservabile dell'Universo è inoltre diffusa isotropicamente, il che significa che ogni regione del cielo ha all'incirca lo stesso contenuto. L'universo è inoltre immerso in una radiazione a microonde altamente isotropica, che corrisponde ad un equilibrio termico con spettro di corpo nero di circa 2,725 kelvin. L'ipotesi secondo cui l'Universo sia omogeneo e isotropo su grandi scale è nota come principio cosmologico, che è supportato da osservazioni astronomiche. L'attuale densità globale dell'universo è molto bassa, circa 9,9 × 10−30 grammi per centimetro cubo. Questa massa-energia sembra essere formata per il 68,3% da energia oscura, il 26,8% da materia oscura fredda e il 4,9% da materia ordinaria. La densità in atomi è dell'ordine di un singolo atomo di idrogeno per ogni quattro metri cubi di volume. Le proprietà dell'energia oscura e della materia oscura sono in gran parte sconosciute. La materia oscura interagisce con il campo gravitazionale come la materia ordinaria, e quindi rallenta l'espansione dell'universo; al contrario, l'energia oscura accelera la sua espansione. La stima più precisa dell'età dell'universo è di 13,798 ± 0,037 miliardi di anni, calcolata sulla base delle osservazioni della radiazione cosmica di fondo condotte con la sonda PLANCK. Stime indipendenti (sulla base di misurazioni come la datazione radioattiva) convergono anch'esse su 13-15 miliardi di anni. L'universo non è stato lo stesso in ogni momento della sua storia; ad esempio, le popolazioni relative dei quasar e delle galassie sono cambiate e lo spazio stesso si è espanso. Questa espansione spiega come sulla Terra si possa osservare la luce proveniente da una galassia lontana 30 miliardi di anni luce, anche se la luce ha viaggiato per 13 miliardi di anni: lo spazio si è ampliato. Questa espansione è coerente con l'osservazione che la luce proveniente da galassie lontane ha subito lo spostamento verso il rosso: la lunghezza d'onda dei fotoni emessi è stata "stirata" e dunque aumentata, con un conseguente abbassamento della loro frequenza, durante il loro viaggio. Sulla base di studi di supernovae di tipo Ia, corroborati anche da altri dati, il tasso di questa espansione spaziale è in accelerazione. Le frazioni relative di diversi elementi chimici - in particolare degli atomi più leggeri, come idrogeno, deuterio e elio - sembrano identiche in tutto l'universo e in tutta la sua storia osservabile. L'universo sembra avere molta più materia che antimateria, un'asimmetria forse correlata alle osservazioni in merito alla violazione di CP. L'universo sembra non avere nessuna carica elettrica netta, e quindi la gravità sembra essere l'interazione dominante su scale di lunghezza cosmologica. L'universo sembra non avere né un momento né un momento angolare netti. L'assenza di carica e quantità di moto nette sarebbe conseguenza di accettate leggi fisiche (la Legge di Gauss e la non-divergenza dello pseudotensore stress-energia-momento) se l'universo fosse finito. L'universo sembra avere un continuum spazio-temporale liscio costituito da tre dimensioni spaziali e da una temporale. In media, le osservazioni sullo spazio tridimensionale suggeriscono che esso sia piatto, cioè abbia curvatura vicina a zero; ciò implica che la geometria euclidea è sperimentalmente vera con elevata precisione per la maggior parte dell'Universo. Lo spaziotempo sembra anche avere una topologia semplicemente connessa, almeno sulla scala di lunghezza dell'universo osservabile. Tuttavia le osservazioni attuali non possono escludere la possibilità che l'universo abbia più dimensioni, e che il suo spazio-tempo possa avere una topologia globale molteplicemente connessa, in analogia con le topologie del cilindro o del toro. L'universo sembra seguire regolarmente un insieme di leggi e costanti fisiche. Secondo l'attuale Modello standard della fisica, la materia è composta da tre generazioni di leptoni e quark, entrambi fermioni. Queste particelle elementari interagiscono attraverso almeno tre interazioni fondamentali: l'interazione elettrodebole che comprende l'elettromagnetismo e la forza nucleare debole, la forza nucleare forte descritta dalla cromodinamica quantistica e la gravità, che, al momento, è descritta al meglio dalla relatività generale. Le prime due interazioni possono essere descritte da teorie quantistiche rinormalizzate, e sono mediate da bosoni di gauge ciascuno dei quali corrisponde a un particolare tipo di simmetria di gauge. Una teoria quantistica dei campi rinormalizzata della relatività generale non è ancora stata raggiunta, anche se le varie forme di teoria delle stringhe sembrano promettenti. Si ritiene che la teoria della relatività speciale valga in tutto l'universo, a condizione che le scale di lunghezza spaziali e temporali siano sufficientemente brevi, altrimenti deve essere applicata la più generale teoria della relatività generale. Non esiste una spiegazione per i valori che le costanti della fisica sembrano avere nel nostro universo, come ad esempio quello per la costante di Planck h o per la costante di gravitazione universale G. Sono state identificate diverse leggi di conservazione, come la conservazione della carica, del momento, del momento angolare e dell'energia; in molti casi queste leggi di conservazione possono essere correlate a simmetrie o a identità matematiche. Sembra che molte delle proprietà dell'Universo abbiano valori speciali: un universo con proprietà solo leggermente differenti non sarebbe in grado di sostenere la vita intelligente. Non tutti gli scienziati concordano sul fatto che l'Universo sia "finemente regolato" (un fine-tuned Universe in inglese). In particolare, non si sa in quali condizioni la vita intelligente si potrebbe formare e in quali forme. Un'osservazione rilevante in questa discussione è che per un osservatore che esista, e quindi in grado di osservare una regolazione fine, l'Universo deve essere in grado di sostenere la vita intelligente. Pertanto, la probabilità condizionata di osservare un universo messo a punto per sostenere la vita intelligente è sempre 1. Questa osservazione è nota come principio antropico ed è particolarmente importante se la creazione dell'Universo è probabilistica o se esistono universi multipli con proprietà variabili (vedi La teoria del Multiverso). Storicamente diverse cosmologie e cosmogonie si sono basate su narrazioni degli eventi fra antiche divinità. Le prime teorie di un universo impersonale governato da leggi fisiche risalgono agli antichi greci e indiani. Nei secoli, nuove invenzioni di strumenti per l'osservazione e scoperte nel campo dei moti dei corpi e della gravitazione portarono ad una sempre più accurata descrizione dell'universo. L'era moderna della cosmologia ebbe inizio nel 1915 con la teoria della relatività generale di Einstein, che rese possibile fare ipotesi quantitative sull'origine, l'evoluzione e la conclusione dell'intero universo. La più moderna ed accettata teoria sulla cosmologia si basa sulla relatività generale e, più nello specifico, sull'ipotesi del Big Bang.
Modelli filosofici
Dal VI secolo prima di Cristo, i Presocratici svilupparono il primo modello filosofico conosciuto dell'universo. Gli antichi filosofi greci notarono che l'apparenza poteva ingannare e che doveva essere compresa per delineare la realtà dietro l'apparenza stessa. In particolare, notarono l'abilità delle cose di mutare forma (come il ghiaccio, in acqua e poi in vapore) e diversi filosofi proposero che tutti gli apparentemente differenti materiali del mondo fossero forme diverse di un singolo materiale primordiale, chiamato Archè. Il primo a pensare ciò fu Talete, il quale affermò che questo materiale era l'acqua. Uno studente di Talete, Anassimandro, propose che ogni cosa provenisse dall'illimitato Ápeiron. Anassimene di Mileto, invece, propose l'aria come Arché, a causa delle sue qualità percepite attrattive e repulsive che le permetteva di condensarsi e dissociarsi in forme differenti. Anassagora propose il principio dell'intelletto cosmico mentre Eraclito affermò che l'Arché fosse il fuoco (e parlò anche di Logos). Empedocle propose quattro elementi: terra, acqua, aria e fuoco, dando così vita ad una credenza molto popolare. Come Pitagora, Platone credeva che tutte le cose erano composte da numeri, trasformando gli elementi di Empedocle in "solidi". Leucippo, Democrito, e altri filosofi successivi - tra cui Epicuro -, proposero che l'universo fosse composto da elementi invisibili, gli atomi, i quali si muovono all'interno del vuoto. Aristotele invece non credeva che fosse possibile in quanto l'aria, come l'acqua, generava una resistenza al moto. L'aria infatti si precipita a riempire un vuoto e, facendo ciò, il suo moto è indefinitivamente veloce e privo di resistenze. Anche se Eraclito parla di cambiamenti eterni, Parmenide, suo quasi contemporaneo, dà un radicale suggerimento, affermando che tutti i cambiamenti sono un'illusione e che la vera realtà è eternamente immutata e di una natura singola. Parmenide chiama questa realtà "Essere". La teoria di Parmenide sembrò implausibile a molti Greci ma un suo studente, Zenone di Elea sostenne questa teoria con diversi e famosi paradossi, i Paradossi di Zenone. Aristotele rispose a questi paradossi sviluppando la nozione di una potenziale infinità numerabile, un esempio della quale è il concetto di continuo infinitamente divisibile. Diversamente dall'eterno e immutabile ciclo del tempo, egli credeva che il mondo fosse delimitato da sfere celesti. Il filosofo indiano Kanada, fondatore della scuola Vaiśeṣika, sviluppò una teoria di atomismo e propose la luce e il calore come varietà della stessa sostanza. Nel V secolo d.C., il filosofo buddhista Dignaga affermò che l'atomo è un punto adimensionale fatto di energia. Negò quindi l'esistenza di una sostanza materiale e affermò che il movimento consisteva in flash momentanei di un flusso di energia. La teoria del finitismo temporale si ispirò alla dottrina della Creazione tipica delle tre religioni abramitiche: giudaismo, cristianesimo e islamismo. Il filosofo cristiano Giovanni Filopono presentò un'argomentazione filosofica contro la nozione greca di un infinito passato ed un infinito futuro. L'argomentazione contro il passato fu creata dal filosofo islamico al-Kindi, dal filosofo ebraico Saadya Gaon e dal teologo islamico Al-Ghazali. Facendosi prestare la "fisica" e la "metafisica" aristoteliche, idearono due argomentazioni logiche contro l'infinitezza del passato, la prima delle quali "argomenta dell'impossibilità dell'esistenza di un infinito attuale", che afferma:
"Un infinito attuale non può esistere.""Un infinito regresso temporale di eventi è un infinito attuale." Rightarrow "Un infinito regresso temporale di eventi non può esistere."
La seconda argomentazione "argomenta dell'impossibilità di completare un infinito attuale con un'adduzione successiva":
"Un infinito attuale non può essere completato da una successiva aggiunta.""Le serie temporali dei passati esempi è stata completata da aggiunte successive." Rightarrow "Le serie temporali dei passati eventi non può essere un infinito attuale."
Entrambe le argomentazioni furono adottate dai filosofi e teologi cristiani e la seconda argomentazione, in particolare, divenne molto famosa dopo che essa fu adottata da Immanuel Kant nelle sue famose tesi sulla prima antinomia sul tempo.
Modelli scientifici
Dei primi modelli astronomici dell'universo furono proposti dagli astronomi babilonesi che vedevano l'universo come un disco piatto posato su un oceano; tale idea fu la premessa per le mappe di Anassimandro ed Ecateo di Mileto. In seguito, i filosofi greci, osservando i moti dei corpi celesti, si concentrarono su modelli di universo sviluppati molto più profondamente su prove empiriche. Il primo modello coerente fu proposto da Eudosso di Cnido. Secondo l'interpretazione fisica di Aristotele del modello, delle sfere celesti ruotano eternamente con moto uniforme attorno ad una Terra immobile, mentre gli elementi classici sono contenuti interamente nella sfera terrestre. Questo modello fu rifinito da Callippo di Cizico e dopo che le sfere concentriche furono abbandonate, fu portato al quasi perfetto accordo con le osservazioni astronomiche da Claudio Tolomeo. Il successo di questo modello è largamente dovuto alla matematica: ogni funzione (come la posizione di un pianeta) può essere decomposta in una serie di funzioni circolari (serie di Fourier). Altri filosofi greci, come il pitagorico Filolao affermarono che al centro dell'universo vi era un "fuoco centrale" attorno cui la Terra, il Sole, la Luna e gli altri pianeti rivoluzionano in un moto uniforme circolare.[60] L'astronomo greco Aristarco di Samo fu il primo a proporre un modello eliocentrico. Anche se il testo originale è stato perso, un riferimento in un testo di Archimede descrive la teoria eliocentrica di Aristarco. Archimede scrive: «Tu Re Gelone sei consapevole che l''universo' è il nome dato dalla maggior parte degli astronomi alla sfera al cui centro è la Terra, mentre il suo raggio è uguale alla linea che congiunge il centro del Sole dal centro della Terra. Questo è il punto in comune come hai potuto udire dagli astronomi. Tuttavia Aristarco ha messo in evidenza un testo che consiste in certe ipotesi, in cui appare, come una conseguenza delle ipotesi fatte, che l'universo è molte volte più grande dell''universo' appena menzionato. Le sue ipotesi dicono che le stelle fisse e il Sole rimangono immobili, che la Terra rivoluziona attorno al Sole sulla circonferenza di un cerchio, il Sole disteso nel mezzo dell'orbita, e che la sfera delle stelle fisse, situate circa nello stesso centro come il Sole, è così grande che il cerchio, nel quale lui suppone sia la Terra per ruotare, supporti una specie di proporzione rispetto alla distanza delle stelle fisse, come il centro delle sfere di supporto rispetto alla sua superficie.» Aristarco quindi credeva che le stelle fossero molto distanti e attribuiva a questa lontananza il fatto che non si riuscisse a misurare alcun moto stellare di parallasse, il quale è un movimento apparente delle stelle determinato dal movimento della Terra attorno al Sole. Le stelle sono infatti molto più distanti rispetto a quanto si potesse immaginare nei tempi antichi e la loro parallasse è così piccola che poté essere misurata solo nel XVIII secolo. Il modello geocentrico, invece, forniva una valida spiegazione della non osservabilità del fenomeno della parallasse stellare. Il rifiuto della concezione eliocentrica fu apparentemente abbastanza forte, come il seguente passaggio di Plutarco suggerisce: «Cleante [un contemporaneo di Aristarco e capo degli Stoici] pensava fosse dovere dei greci accusare Aristarco di Samo di empietà per aver messo in moto la Salute dell'universo, [...] supponendo che il cielo rimanga immobile e che la Terra rivoluzioni in un circolo obliquo, mentre ruotava, allo stesso tempo, attorno al suo stesso asse.» L'unico astronomo conosciuto dell'antichità che abbia supportato il modello eliocentrico di Aristarco fu Seleuco di Seleucia, un astronomo greco che visse un secolo dopo Aristarco stesso.Secondo Plutarco, Seleuco fu il primo a dare prova della correttezza del sistema eliocentrico attraverso il ragionamento ma non si ha conoscenza di quali argomentazioni abbia usato. Tali argomenti a favore della teoria eliocentrica furono probabilmente legati al fenomeno delle maree. Secondo Strabone, Seleuco fu il primo ad affermare che le maree sono dovute all'attrazione della Luna e che la loro altezza dipende dalla posizione della Luna rispetto al Sole. In alternativa, avrebbe potuto provare la teoria eliocentrica determinando la costante di un modello geometrico della teoria eliocentrica e sviluppando metodi per determinare le posizioni planetarie usando questo modello, come ciò che avrebbe fatto in seguito Corpernico nel XVI secolo. Durante il Medioevo, il modello eliocentrico poteva essere proposto solo dall'astronomo indiano Aryabhata e dai persiani Abu Ma'shar al-Balkhi e Al-Sijzi. Il modello aristotelico fu accettato nel mondo occidentale per circa due millenni, finché Copernico non ravvivò la teoria di Aristarco che i dati astronomici potevano essere spiegati più plausibilmente se la Terra ruotava attorno al proprio asse e se il Sole fosse posizionato al centro dell'universo.
«Nel centro vi è il Sole. Per chi avrebbe posto questa lampada di un bellissimo tempio in un altro o migliore posto di questo dal quale può illuminare tutto allo stesso tempo?»
Come fa notare Copernico stesso, l'idea che la Terra ruoti era molto antica, databile almeno fin da Filolao (circa 450 a.C.), Eraclide Pontico (circa 350 a.C.) ed Ecfanto di Siracusa. Circa un secolo prima di Copernico, uno studioso cristiano, Nicola Cusano, aveva anch'esso proposto che la Terra ruotasse attorno al proprio asse nel suo stesso testo, La Dotta Ignoranza (1440). Anche Aryabhata (476 - 550), Brahmagupta (598 - 668), Abu Ma'shar al-Balkhi e Al-Sijzi avevano presunto che la Terra ruotasse attorno al proprio asse. La prima prova empirica della rotazione della Terra, ottenuta osservando le comete, fu data da Nasir al-Din al-Tusi (1201 - 1274) e da Ali Qushji (1403 - 1474) Questa cosmologia era accettata da Isaac Newton, Christiaan Huygens e altri scienziati. Edmund Halley (1720) e Jean-Philippe Loys de Chéseaux (1744) notarono, indipendentemente, che il presupposto di uno spazio infinito e saturo, uniforme con le stelle, avrebbe portato alla conclusione che il cielo notturno avrebbe dovuto essere luminoso come quello durante il dì; questa analisi divenne nota, nel XIX secolo come il Paradosso di Olbers. Newton credeva che uno spazio infinito uniformemente saturo con la materia avrebbe causato infinite forze ed infinita stabilità che avrebbe portato la materia a condensarsi verso l'interno a causa della sua stessa gravità. Questa instabilità fu chiarita nel 1902 dal criterio dell'instabilità di Jeans. Una soluzione a questo paradosso è l'universo di Charlier, in cui la materia è organizzata gerarchicamente (sistemi di corpi orbitanti che sono loro stessi in orbita in sistemi più grandi, ad infinitum) in un frattale come ad esempio quello in cui l'universo ha una densità complessiva trascurabile; un modello cosmologico simile fu proposto precedentemente, nel 1761, da Johann Heinrich Lambert. Un avanzamento astronomico significativo del XVIII secolo si ebbe con le nebulose, su cui discussero anche Thomas Wright e Immanuel Kant. La cosmologia fisica dell'era moderna cominciò nel 1917, quando Albert Einstein per primo applicò la sua teoria generale della relatività per modellare strutture e dinamiche dell'universo. Una volta stabilita la predominanza della gravitazione nelle strutture cosmiche, per avere modelli accurati del passato e del futuro dell'universo bisogna avere una teoria anch'essa accurata della gravitazione dei corpi. La miglior teoria in merito è la teoria della relatività generale di Albert Einstein, la quale finora ha superato con successo ogni test sperimentale eseguito. Le previsioni cosmologiche effettuate con essa appaiono, con l'osservazione astronomica, corrette, così non vi sono ragioni per adottare una teoria differente.
Universo & relatività
La relatività generale richiede dieci equazioni differenziali parziali non lineari per la metrica spaziotemporale (Equazioni di campo) che, applicate al "sistema Universo", devono essere risolte con la distribuzione della massa - energia e della quantità di moto su tutto l'universo. Dato che queste non sono note in dettaglio, i modelli cosmologici si sono finora basati sul principio cosmologico, che afferma che l'universo è omogeneo e isotropo; ovvero che le galassie siano distribuite uniformemente su tutto l'universo, con la stessa densità media. Presumendo una polvere uniforme per tutto l'universo, le equazioni di campo di Einstein si riducono alle più semplici Equazioni di Friedmann e si può quindi prevedere facilmente il futuro dell'universo e conoscere anche con buona precisione il suo passato, sempre su scala cosmologica. Le equazioni di campo di Einstein includono una costante cosmologica (Λ), che corrisponde ad una densità di energia dello spazio vuoto. In base al suo segno, la costante può ridurre (Λ negativo) o accelerare (Λ positivo) l'espansione dell'universo. Anche se molti scienziati, incluso Einstein, hanno sostenuto che Λ fosse uguale a zero, recenti osservazioni astronomiche di una supernova di tipo Ia hanno fatto individuare una buona quantità di energia oscura, la quale funziona da catalizzatrice per l'espansione dell'universo. Studi preliminari suggeriscono che l'energia oscura corrisponde ad un Λ positivo, anche se teorie alternative non si possono ancora escludere. Il fisico russo Jakov Borisovič Zel'dovič ha suggerito che Λ sia una misura di energia di punto zero associata con particelle virtuali della teoria quantistica dei campi, una diffusa energia del vuoto che esiste ovunque, anche nello spazio vuoto. Prova di questa energia di punto zero sarebbe osservabile nell'effetto Casimir. Le distanze fra le galassie aumentano con il passare del tempo (legge di Hubble). L'animazione a fianco illustra un universo chiuso di Friedman con costante cosmologica Λ uguale a zero. Le equazioni di campo di Einstein legano la geometria ed in particolare la curvatura dello spaziotempo alla presenza di materia o energia. La curvatura dello spaziotempo è un parametro che può essere positivo, negativo o nullo. Semplificando lo spaziotempo (che è a quattro dimensioni) in una superficie bidimensionale (che è a due dimensioni) per ovvia comodità di rappresentazione, la curvatura si manifesta, su una superficie bidimensionale, nella somma degli angoli interni di un triangolo. In uno spazio piatto, ovvero "a curvatura nulla" (spazio euclideo, spaziotempo di Minkowski), la somma degli angoli interni di un triangolo è esattamente uguale a 180 gradi. In uno spazio curvo invece la somma degli angoli interni di un triangolo è maggiore o minore di 180 gradi secondo che la curvatura sia positiva o negativa (la differenza da questo ultimo valore è chiamato angolo di deficit). Una curvatura non nulla dello spaziotempo implica che questo debba essere studiato con le regole di una geometria non euclidea opportuna. Le geometrie non euclidee devono essere quindi considerate nelle soluzioni generali dell'equazione di campo di Einstein.
Barra delle equazioni per i lettori più curiosi
In esse, il teorema di Pitagora per il calcolo delle distanze vale solamente su lunghezze infinitesime e deve essere "sostituito" con un più generale tensore metrico gμν, che può variare da luogo a luogo. Presumendo il principio cosmologico, secondo cui l'universo è omogeneo e isotropo, la densità di materia in ogni punto nello spazio è uguale ad ogni altro e quindi possono essere ricercate soluzioni simmetriche in cui il tensore metrico sarà costante ovunque nello spazio tridimensionale. Ciò porta a considerare un possibile tensore metrico chiamato Metrica di Friedmann - Lemaître - Robertson - Walker:
dove (r, θ, φ) corrispondono ad un sistema di coordinate sferico. Questa metrica ha solo due parametri indeterminati: una scala di lunghezza complessiva R che può variare con il tempo (che infatti compare come R(t), dove t indica il tempo) e un indice di curvatura k che può assumere solo i valori 0, 1 o -1, corrispondenti al piano della geometria euclidea o a spazi di curvatura positiva o negativa. Tramite questi due parametri, la metrica influenza la storia dell'universo, la quale verrà quindi dedotta calcolando R in funzione del tempo, assegnati i valori di k e della costante cosmologica Λ, che è un parametro delle equazioni di campo di Einstein. L'equazione che descrive come varia R nel tempo ( R(t) ) quando si assume il principio cosmologico, è più propriamente conosciuta come equazione di Friedmann, che è una forma particolare dell'Equazione di campo di Einstein.
Le soluzioni per R(t) dipendono da k e da Λ, ma alcune caratteristiche qualitative di tali soluzioni sono generali. Prima e più importante, la lunghezza della scala R dell'Universo può rimanere costante solo se l'Universo è perfettamente isotropo, con curvatura positiva (k = 1), e con un preciso valore di densità uguale dappertutto; quest'osservazione fu fatta da Einstein. Anche questo equilibrio è tuttavia instabile, e d'altra parte l'Universo è noto per essere disomogeneo sulle scale più piccole; pertanto, in accordo con la relatività generale, R deve cambiare. Quando R cambia, tutte le distanze spaziali nell'Universo cambiano in tandem: si registra un aumento globale o una contrazione dello spazio stesso. Questo spiega l'osservazione iniziale che le galassie si stanno allontanando tra di loro: lo spazio tra di loro si sta "stirando". Lo stiramento dello spazio spiega anche l'apparente paradosso per cui due galassie possono essere separate da 40 miliardi di anni luce anche se hanno iniziato la loro storia nello stesso punto 13 798 000 000 di anni fa e non si sono mai mosse più velocemente della luce. La seconda caratteristica è che tutte le soluzioni suggeriscono la presenza nel passato di una singolarità gravitazionale: quando R va a 0, la materia e l'energia presenti nell'Universo divengono infinitamente dense. Può sembrare che questa conclusione sia dubbia, in quanto si basa su ipotesi discutibili di perfetta omogeneità e isotropia (principio cosmologico) e sull'idea che solo l'interazione gravitazionale sia significativa. Tuttavia, i Teoremi sulla singolarità di Penrose-Hawking indicano che una singolarità dovrebbe esistere anche sotto condizioni molto più generali. Pertanto, in base alle equazioni di campo di Einstein, R è cresciuto rapidamente da uno stato di densità e calore inimmaginabili, esistente immediatamente dopo la singolarità. Questa è l'essenza del modello del Big Bang. Un comune errore che si fa pensando al Big Bang è che il modello preveda che la materia e l'energia siano esplose da un singolo punto nello spazio e nel tempo; in realtà, lo spazio stesso è stato creato nel Big Bang, intriso di una quantità fissa di energia e di materia distribuite inizialmente in modo uniforme; con l'espansione dello spazio (vale a dire, con l'aumento di R (t)), la densità di materia e di energia diminuisce. La terza caratteristica è che l'indice di curvatura k determina il segno della curvatura spaziale media dello spaziotempo su scale di lunghezza superiore al miliardo di anni luce. Se k = 1, la curvatura è positiva e l'Universo ha un volume finito. Questo tipo di Universo è spesso visualizzato come una sfera tridimensionale S3 incorporata in uno spazio quadridimensionale. Se k è invece pari a zero o negativo, l'Universo può, in base alla sua topologia complessiva, avere un volume infinito. Può sembrare contro-intuitivo il fatto che un universo infinito e infinitamente denso possa essere stato creato in un solo istante con il Big Bang, quando R = 0, tuttavia ciò è ricavabile matematicamente ponendo k diverso da 1. Analogamente, un piano infinito ha curvatura nulla ma area infinita, un cilindro infinito è finito in una direzione, mentre un toro è finito in entrambe le direzioni. Un Universo toroidale potrebbe comportarsi come un universo con condizioni al contorno periodiche: un viaggiatore che attraversi un "confine" dello spazio riapparirebbe in un altro punto dello stesso Universo.
Curiosità extra
Il destino ultimo dell'Universo è attualmente sconosciuto, in quanto dipende strettamente dall'indice di curvatura k e dalla costante cosmologica Λ, entrambi ancora non noti sperimentalmente con sufficiente precisione. Se l'Universo è abbastanza denso, k è uguale a 1, la sua curvatura media sarebbe positiva e l'Universo finirebbe per collassare in un Big Crunch, per poi eventualmente dar vita ad un nuovo Universo in un Big Bounce. Se invece l'Universo non è sufficientemente denso, k è uguale a 0 o a -1, l'Universo si espanderebbe all'infinito (Big Freeze), raffreddandosi fino a diventare inospitale per tutte le forme di vita, le stelle si spegnerebbero e la materia finirebbe in buchi neri (secondo alcuni, come Lee Smolin, ogni buco nero potrebbe generare a sua volta un nuovo universo). Come osservato in precedenza, dati recenti suggeriscono che la velocità di espansione dell'Universo non è in calo come originariamente previsto, ma in aumento. Se la velocità di espansione continuasse ad aumentare indefinitamente, l'Universo si espanderebbe in modo tale da "fare a brandelli" tutta la materia: (Big Rip). Sulla base delle recenti osservazioni, l'Universo sembra avere una densità vicina al valore critico che separa il collasso (Big Crunch) dall'espansione eterna (Big Freeze); per comprendere quindi l'effettivo destino dell'universo sono necessarie osservazioni astronomiche più precise.
Il modello prevalente del Big Bang tiene conto di molte delle osservazioni sperimentali sopra descritte, come ad esempio la correlazione tra distanza e redshift delle galassie, il rapporto universale tra il numero di atomi di idrogeno e quello di atomi di elio, e la presenza dell'isotropica radiazione cosmica di fondo. Come notato sopra, il redshift deriva dall'espansione metrica dello spazio: con l'espansione dello spazio, la lunghezza d'onda di un fotone viaggiante attraverso lo spazio aumenta in maniera analoga, e il fotone diminuisce la sua energia. Più a lungo un fotone ha viaggiato, più è grande l'espansione che ha subito; di conseguenza, i fotoni delle galassie più distanti vengono spostati verso le lunghezze d'onda più basse; si dice "spostati verso il rosso", ovvero, con un anglicismo, sono "red-shiftati". Determinare la correlazione tra distanza e spostamento verso il rosso è un importante problema sperimentale di cosmologia fisica. Le altre due osservazioni sperimentali possono essere spiegate combinando l'espansione globale dello spazio con la fisica nucleare e la fisica atomica. Con l'espansione dell'Universo, la densità di energia della radiazione elettromagnetica diminuisce più velocemente rispetto a quella della materia, in quanto l'energia di un fotone diminuisce con la sua lunghezza d'onda. Quindi, anche se la densità di energia dell'Universo è ora dominata dalla materia, un tempo era dominata dalla radiazione; poeticamente parlando, tutto era luce. Durante l'espansione dell'universo, la sua densità di energia è diminuita ed è diventato più freddo; in tal modo, le particelle elementari della materia si sono potute associare stabilmente in combinazioni sempre più grandi. Pertanto, nella prima parte dell'epoca dominata dalla materia, si sono formati protoni e neutroni stabili, che si sono poi associati in nuclei atomici. In questa fase, la materia dell'Universo era principalmente un caldo, denso plasma di elettroni negativi, neutrini neutri e nuclei positivi. Le reazioni nucleari tra i nuclei hanno portato alle abbondanze presenti dei nuclei più leggeri, in particolare dell'idrogeno, del deuterio e dell'elio. Elettroni e nuclei si sono infine combinati per formare atomi stabili, che sono trasparenti alla maggior parte delle lunghezze d'onda della radiazione; a questo punto, la radiazione si disaccoppiò quindi dalla materia, formando l'onnipresente, isotropico sfondo di radiazione a microonde osservato oggi. Altre osservazioni non hanno ancora una risposta definitiva dalla fisica conosciuta. Secondo la teoria prevalente, un leggero squilibrio della materia sull'antimateria era presente alla creazione dell'Universo, o si sviluppò poco dopo, probabilmente a causa della violazione di CP osservata dai fisici delle particelle. Anche se materia e antimateria si sono in gran parte annientate l'una con l'altra, producendo fotoni, una piccola quantità di materia è così sopravvissuta, dando l'attuale Universo dominato dalla materia. Molte evidenze sperimentali suggeriscono che una rapida inflazione cosmica dell'Universo avvenne molto presto nella sua storia (circa 10−35 secondi dopo la sua creazione). Recenti osservazioni suggeriscono anche che la costante cosmologica (Λ) non è pari a zero e che il contenuto netto di massa-energia dell'Universo sia dominato da una energia oscura e da una materia oscura che non sono state ancora caratterizzate scientificamente. Esse differiscono nei loro effetti gravitazionali. La materia oscura gravita come la materia ordinaria e rallenta quindi l'espansione dell'Universo; al contrario, l'energia oscura accelera l'espansione dell'Universo.
Curiosità extra
Un'importante domanda della cosmologia per ora senza risposta è quella della forma dell'universo, ovvero di quale sia la combinazione di curvatura e topologia che lo domina. Intuitivamente, ci si chiede quanto le relazioni tra i suoi punti rispecchino le regole della geometria euclidea o piuttosto quelle di altre geometrie, e, per quanto riguarda la topologia, ci si può chiedere ad esempio se l'universo è fatto di un solo "blocco", oppure se invece presenta "strappi" di qualche genere. La forma o geometria dell'Universo include sia la geometria locale dell'Universo osservabile sia la geometria globale, che possiamo essere o non essere in grado di misurare. Formalmente, lo scienziato indaga quale 3-varietà corrisponde alla sezione spaziale in coordinate comoventi dello spaziotempo quadridimensionale dell'Universo. I cosmologi normalmente lavorano con una data fetta di spazio-tempo di tipo spazio chiamata coordinata comovente. In termini osservativi, la sezione dello spazio-tempo che si può osservare è il cono di luce passato (i punti all'interno dell'orizzonte cosmologico, dato un certo tempo per raggiungere l'osservatore). Se l'universo osservabile è più piccolo dell'intero Universo (in alcuni modelli è di molti ordini di grandezza inferiore), non si può determinare la struttura globale mediante l'osservazione: ci si deve limitare a una piccola regione. Tra i modelli di Friedmann-Lemaître-Robertson-Walker (FLRW), la forma di universo attualmente più popolare tra quelle trovate per contenere i dati osservativi, tra i cosmologi, è il modello piatto infinito,[93] mentre altri modelli FLRW includono lo spazio di Poincaré dodecaedrico e il Corno di Picard. I dati che si adattano a questi modelli FLRW di spazio includono in particolare le mappe della radiazione cosmica di fondo della sonda Wilkinson Microwave Anisotropy Probe (WMAP). La NASA ha pubblicato i primi dati del WMAP relativi alle radiazioni cosmiche di fondo nel febbraio 2003. Nel 2009 è stato lanciato l'osservatorio Planck per osservare il fondo a microonde a una più alta risoluzione di WMAP, possibilmente fornendo maggiori informazioni sulla forma dell'Universo. I dati sono stati poi pubblicati a marzo del 2013 - si veda il paragrafo Storia della sua osservazione.
Adesso che ci è chiara la natura del nostro Universo andiamo a vedere cosa sono gli Universi paralleli.
Universi Multipli: cosa sono
Dimensione parallela
Una dimensione parallela o universo parallelo (anche realtà parallela, universo alternativo, dimensione alternativa o realtà alternativa) è un ipotetico universo separato e distinto dal nostro ma coesistente con esso; nella maggioranza dei casi immaginati è identificabile con un altro continuum spazio-temporale. L'insieme di tutti gli eventuali universi paralleli è detto multiverso. Il concetto di "altri universi" non è estraneo alla letteratura scientifica: esistono alcune teorie cosmologiche e fisiche che ammettono la loro esistenza, la più famosa delle quali è la teoria delle stringhe. In campo filosofico, un indagatore del tema delle dimensioni parallele fu Auguste Blanqui, che nel 1872 indagò gli aspetti teorici e filosofici di un universo a infinite dimensioni nell'opera L'Eternité par les astres. Opera anomala nella produzione di Blanqui, essa anticipa elementi che si ritrovano anche in Jorge Luis Borges. Nella narrativa fantascientifica, il concetto di universi paralleli viene introdotto per la prima volta dallo scrittore statunitense Murray Leinster nel 1934, per essere ripreso in seguito da molte opere successive divenendo così un tema classico della letteratura fantascientifica. Va precisato che il lemma "dimensione" (con l'accezione di regione o luogo spaziale occupabile e/o percorribile), sebbene nel gergo colloquiale e narrativo possa genericamente riferirsi a un'ulteriore realtà nascosta o oscura ma simile o sovrapponibile alla struttura del nostro mondo, in contesto prettamente scientifico va distinto dagli altri termini (universo parallelo, realtà parallela, universo alternativo, realtà alternativa) in quanto designa una o più quantità e qualità metriche intrinseche al luogo misurato (inerenti a qualche specifica topologia): ad esempio con le caratteristiche di "quarta dimensione" è definibile una configurazione (come l'ipersfera) che manifesta proprietà e relazioni spaziali differenti da quelle tridimensionali a noi presenti e direttamente visibili, che non si riesce neppure a raffigurarla mentalmente a meno di ricorrere ad un modello geometrico composito, il cui segno grafico ha aspetto solo indicativo e ne inquadra i singoli caratteri riducendoli nei limiti tridimensionali. Così in tal contesto, asserire l'esistenza fisica d'altra aggiuntiva dimensione parallela, oltre le tre normalmente osservate nel nostro universo (euclideo), implica dichiarare la presenza di misure/elementi/forme (associabili a cifre) passibili di misurazione, le quali affiancano e/o completano l'estensione (superficiale e volumetrica) normale, ma restando fuori dalla gamma compresa e percepita empiricamente dall'apparato sensorio naturale. Dunque la complessiva rappresentazione pluridimensionale più corretta è approcciabile solo per mezzo o con ausilio matematico. In breve, al di là della facilità con cui artisticamente a volte s'illustrano esotiche "dimensioni spaziali" e si usa l'espressione come sinonimo indicante località comunque praticabili come il nostro ambiente, esse possono ben delinearsi e approcciarsi solo con calcolo e ricomposizione indiretta e astratta. Comunque, malgrado la incompatibile recepibilità (almeno completa e diretta) di strutture metricamente pluridimensionali da parte di quelle corporee a sole tre dimensioni, si stanno studiando soluzioni scientificamente attendibili per aggirare le restrizioni fisiche e sfruttare almeno un'ulteriore dimensionalità (nel tessuto spazio-temporale conosciuto) per aprire passaggi occasionali in grado di trasportare viaggiatori e/o oggetti (che nello spostamento però continuerebbero a rimanere e a sperimentare solo le proprie dimensioni originarie) tra punti anche reciprocamente remoti del cosmo, o per muoversi avanti e indietro nel cronotopo. L'uso di materia esotica con proprietà e effetti antigravitazionali, prodotta artificialmente o trovata in natura, è indispensabile a tal scopo. Ma su queste possibilità, che avvicinano la produzione fantascientifica alla scienza ortodossa, vi è marcata divisione nella comunità accademica; e sul tema si resta nell'ambito puramente teorico mancando, finora, solidi indizi osservativo-sperimentali relativi in scala macroscopica. Ma qualche spiraglio s'intravede nello studio al livello quantistico. Difatti il meccanismo (per ora avveniristico e ipotetico), per creare dei tunnel utili al suddetto obiettivo, sarebbe espandere ai limiti del macrocosmo quelle proprietà che diverse teorie (ma non tutte, non v'è unanimità di giudizio) calcolano esistenti ma confinate al massimo entro la misura del nucleo atomico. In sintesi, per le prospettive prettamente empirico-scientifiche e pratiche, per realizzare la possibilità dei viaggi nel tempo e/o in altre dimensioni e universi (ad esempio attraversando un buco-nero) è anzitutto indispensabile fondere in unico teorema fisico matematicamente coerente la teoria quantomeccanica e quella relativistica che finora divergono, in specie per la differente considerazione delle proprietà del campo gravitazionale. In quanto tali spostamenti crono/dimensionali presuppongono la piena (e fin alle loro estreme conseguenze logiche) padronanza e applicazione tecnologica d'entrambe le discipline. Il viaggio nel tempo e il passaggio in una o più dimensioni parallele, restano così temi strettamente connessi spesso anche nell'espressioni classiche della fantascienza; che le interessano in quanto il concetto di realtà parallela, nell'ambito del fantastico, è chiaramente un espediente che lascia vaste possibilità all'intreccio narrativo; implicando che se in una realtà un determinato evento s'evolve in una direzione, in altre, fra quelle parallele, probabilmente può divergere verso un alternativo esito. L'invenzione di trame basate su una linea storica alternativa ha dato origine al genere distinto dell'ucronia; anche se in tale filone generalmente non contemplata la compresenza di più dimensioni. Il tema delle dimensioni parallele si lega frequentemente a quello del viaggio nel tempo, ed è motivo di riflessione e indagine epistematica insieme alla scientifica oltre che d'attenzione artistica, a causa dei paradossi che quest'ultimo può generare. (Al proposito il quantistico David Deutsch ritiene che proprio la ramificazione del cosmo in realtà parallele, almeno quella compatibile con la teoria di Hugh Everett, offra una scappatoia/soluzione alle paventate attese paradossali (autocontraddittorie) degli spostamenti verso il passato: dei quali il principale è il paradosso del nonno). A cavallo tra gli anni novanta e primi duemila, in ambito cosmologico, sono state elaborate tipologie di possibili universi coesistenti e paralleli. Una delinea la presenza d'universi in serie a noi contigui, in quanto collocati a fianco del nostro in un bulk, che arriva ad avere una quinta dimensione (o quarta spaziale), che farebbe da contenitore alle loro rispettive estensioni, aventi tutte proprietà metriche tridimensionali (quadridimensionali, comprendendo anche la dimensione-tempo). Essi sarebbero posizionati uno accanto all'altro, come i fogli racchiusi in un libro: composto da pagine bidimensionali ma che nel loro insieme sono inserite in un contenitore (il libro) con tre dimensioni. Questo significherebbe che all'interno d'un ampio vuoto iper-spaziale, tanti universi (sia per proprietà che leggi globali) non dissimili dal nostro, siano così contigui da sfiorarci ma senza noi poterli percepire direttamente, in quanto le forze naturali (come quella elettromagnetica) captabili da apparati sensoriali e/o tecnologici, restano confinate nelle dimensioni del loro luogo cosmico originario; ma, in questo schema, con l'eccezione della gravitazione: il cui "campo" è ritenuto in grado di propagarsi oltre ogni distinto mondo dimensionale che ne è causa e fonte. I piani su cui materialmente risiederebbero tali universi vengono spesso definiti (in ambito teorico) "membrane" o "brane". Secondo alcune vedute potrebbe trattarsi anche d'un unico, infinito, piano spaziale ma ripiegato più volte: affine (figurativamente) a un nastro a tratti curvato su sé stesso, in strati geometricamente paralleli. Questo modello così esplica, almeno in parte, anche la ragione di quella che comunemente è denominata materia/massa oscura: astronomicamente rilevata, in via indiretta, proprio per effetto gravitazionale; entità che empiricamente risulta estendersi intorno alle galassie e ai raggruppamenti che esse formano nel cosmo visibile. Il filosofo statunitense David Lewis negli ultimi decenni del Novecento elaborò una teoria che pare ricalcare almeno esteriormente la visione multiversale di Everett, però in chiave e con motivazione specificatamente filosofica, senza riferirsi ai paradigmi quantistici, come quello delle probabili ramificazioni in autostati conseguenti ai processi della funzione d'onda, o dell'osservazione sperimentale. Tipico del suo pensiero è la logica espressa nella forma (da lui teorizzata) del "realismo modale"; secondo la quale per dar consistenza alle soluzioni dei problemi collegati alla definizione e determinazione del mondo empirico, con le sue specificità temporali ed individuali, è fondamentale riconoscere che per ogni relativo evento e comportamento esiste un'entità "controfattuale", cioè una reale controparte equivalente, che attua le varianti degli eventi: qui realizzatisi in uno solo dei possibili modi correlati. In riferimento ad un suo esempio, se si riconosce che una guardia avrebbe potuto dar l'allarme per evitare un crimine qua commesso, è coerente accettare l'idea dell'esistenza d'una controparte ("controfattuale") di tale guardia, essenzialmente con identità uguale pur se del tutto separata e fisicamente indipendente, che in un altro mondo, né causalmente né casualmente legato all'altro (benché suo corrispettivo), ha messo in pratica quel potenziale gesto che qui è mancato (sviluppi impliciti nella "teoria della controparte"). Lewis, considerando come già storicamente sia ricorsa, in filosofia (vedi Leibniz), l'idea dei mondi possibili, avanzata solo quale modello puramente esemplare per meglio affrontare razionalmente i più controversi problemi epistemologici, arriva alla conclusione che invece può con legittimità ritenersi indispensabile: proprio valutarla come descrivente la realtà esistente. La sua pubblicazione più famosa è appunto il libro On the plurality of Worlds (del 1986) che nelle pagine iniziali, relativamente a una pluralità materialmente concreta di mondi (in vari gradi) simili e/o uguali, dove si svolgerebbero eventi da poter porre in reciproca comparazione, asserisce "...l'ipotesi è utile e questa è una ragione per pensare che sia vera..." E continua l'esposizione spiegando come quest'ipotesi riesca a chiarire molte questioni logico/filosofiche, nonché gli interrogativi emergenti nello studio della semantica, del funzionamento mentale e (naturalmente) della scienza fisica. Riassumendola, in linea di massima: esiste un mondo per ogni modo possibile in cui esso può esistere. In genere, per l'analisi d'ogni elemento osservato ci si basa proprio sui confronti fra la sua determinazione empirica e le modalità alternative e logicamente coerenti e autoconsistenti che l'elemento potrebbe manifestare, e ciò implica che tali possibilità sia corretto giudicarle vere in tutti i sensi. Si può aggiungere alle tipologie riguardanti eventuali dimensioni parallele anche un'interpretazione contemporanea d'aspetto metafisico e spiritualista/spiritistico. È la visione propugnata attualmente nei saggi di Walter Semkiw, medico statunitense, tra i quali "Return of the revolutionaries: the case for reincarnation". Questo saggio e la sua cornice di convinzioni si basa anche su coincidenze osservate considerate non casuali e reperti (visivi) giudicati non artificiosi. L'impianto generale della concezione riprende alcuni temi già conosciuti e acquisiti dalla tradizione medianica, occultista anche ricollegati a influenze mistiche orientali relative al ciclo escatologico delle rinascite, vi s'intravede il riverbero della cognizione indù del karma; e temi in parte originali, proiettabili in un contesto moderno e tecnologico. In sintesi si sostiene la presenza d'un piano con proprietà fisiche che ripetono, con qualità superiore, quelle terrestri e adatto alla prosecuzione d'una vita dopo quella terrena: e a seconda dei casi quasi speculare a essa. Tale regione dovrebb'esser strutturata in graduali livelli: dai meno ai più evoluti, nei quali è contemplato pure il noto medianico "piano astrale". Veri livelli spaziali paralleli, riservati ai soggetti deceduti, e adeguati alle rispettive virtù e imperfezioni morali espresse nell'esperienza terrena. Fra le possibilità sarebbe consentito viaggiare in tali spazi anche a bordo di vari velivoli, fra i quali mongolfiere uguali a quelle usate sulla Terra. Un corpo di leggera sostanza eterea, contenuto in quello umano naturale (composto materia pesante) ma a esso esteticamente somigliante, si trasferirebbe, subito o poco dopo la morte, in tale alto luogo: profilabile com'un'altra dimensione parallela alla terrestre. Dove, liberati dal consueto fardello carnale, i corpi meno grevi, continuerebbero a vivere con modalità riproducenti quelle del mondo materiale; potendovi praticare addirittura le stesse attività, ludiche, intellettuali e professionali, svolte nell'esistenza terrena, in condizioni apparentemente simili sebbene molto più funzionali e soddisfacenti: perfino disponendo di campi sportivi, come da golf o d'altri sport e d'aree adibite allo svago, oltre che di laboratori scientifici. E i là dimoranti, di tanto in tanto, cercherebbero di comunicare con l'umanità terrena mediante apparecchiature tecnicamente affini a quelle elettroniche e trasmittenti, là appositamente costruite e migliorate da avanzate innovazioni. Per questo essi sarebbero udibili o visibili a volte fra le immagini dei consueti schermi televisivi o fra l'onde captate dai comuni nostri radioricevitori e simil strumenti. Da quel mondo gli ex defunti riuscirebbero anche a telefonere ai loro amici, colleghi, o parenti ancora vivi. "ITC": Instrumental Trans Communication, è denominato questo sistema di presunti contatti e il loro studio sistematico. Suddetti corpi eterei però non resterebbero necessariamente stabili, ma pur essi verrebbero abbandonati, anche mediante una specie di seconda morte, al compimento di evoluzioni spirituali verso ulteriori livelli dimensionali. Comunque tali entità resterebbero soggette a tornare nella vita materiale con reincarnazione: manifestando parecchie proprietà fisio-somatiche e attitudini mentali e comportamentali della loro precedente esistenza terrena, e a tratti mantenute nell'altra dimensione. A volte tali anime rinate sono recenti e altre appartengono a epoche storiche, e qui possono ricondividere o reincontrare persone già praticate in un loro comune passato, che però rinascendo spesso dimenticano o di cui ricordano solo qualche riverbero in modo vago o indistinto. L'autore del testo suindicato, Walter Semkiw, sarebbe riuscito ad individuare un gruppo di reincarnati che, alla luce delle sue indagini, parteciparono alla guerra d'indipendenza americana e a volte, pur se in altre vesti, celebri in questa nuova vita; qualcuno ora già rideceduto: fra i quali spicca il nome del noto astronomo Carl Sagan, il quale sarebbe stato un (pur se nella nuova vita a propria insaputa) indipendentista americano, e intellettuale/scienziato all'epoca già d'un certo rilievo. Quest'idea, per quanto ai rigori della tradizionale razionalità si presenti fantasiosa o bizzarra, è teorizzata e seguita, e negli USA sta ottenendo un certo interesse attivo, anche da e fra esponenti dediti a normali attività e professione scientifica; e si vanno disponendo centri di studio e ricerca pure a tratti con qualche partecipazione accademica e collaborazioni qualificate: quali di medici, neurologi, psicologi...etc. A riprova il libro di Semkiw, qui summenzionato, si trova fra quelli elencati nel sito americano di Kary Mullis. (Non mancano produzioni cinematografiche o narrative che s'ispirino a tale prospettiva).
Multiverso
In fisica teorica il multiverso è un'ipotesi che postula l'esistenza di universi coesistenti fuori dal nostro spaziotempo, spesso denominati dimensioni parallele. Il concetto di multiverso fu proposto in modo rigoroso per la prima volta da Hugh Everett III nel 1957 con l'interpretazione a molti mondi della meccanica quantistica. Successivamente è stato riaffermato come possibile conseguenza di alcune teorie scientifiche, specialmente la teoria delle stringhe e quella dell'inflazione caotica o teoria delle bolle. Dal punto di vista filosofico l'ipotesi è antica, essendo stata posta come pluralità dei mondi simili alla Terra già dagli atomisti greci, e trovò nuovo vigore dopo la rivoluzione copernicana con la scoperta della grandezza effettiva dell'universo, contenente miliardi di galassie. Un precursore dell'idea moderna di multiverso fu il filosofo rinascimentale Giordano Bruno. L'ipotesi è fonte di disaccordo nella comunità dei fisici, che la collocano nella scienza di confine. Tra i sostenitori di almeno uno dei modelli del multiverso ci sono Stephen Hawking, Steven Weinberg, Brian Greene, Michio Kaku, Neil Turok, Lee Smolin, Max Tegmark, Andrej Linde, Alex Vilenkin. Tra coloro che non accettano l'ipotesi così com'è formulata o che la criticano ci sono David Gross, Paul Steinhardt (che sostiene l'ipotesi della collisione di due mondi-brana), Roger Penrose (che propone una sua versione differente detta cosmologia ciclica conforme) e Paul Davies. Per alcuni di questi studiosi la questione è più filosofica che scientifica, quindi dannosa per la fisica teorica in quanto semplicemente pseudoscienza, ovvero una speculazione teorica non falsificabile da dati o evidenze sperimentali. Il termine Multiverso fu coniato nel 1895 dallo scrittore e psicologo americano William James. L'idea di universi paralleli fu ripresa dallo scrittore di fantascienza statunitense Murray Leinster nel 1934 e in seguito da molti altri, come Jorge Luis Borges, divenendo un classico del genere fantastico. Il multiverso è, scientificamente parlando, un insieme di universi coesistenti previsto da varie teorie, come quella dell'inflazione eterna di Linde o come quella secondo cui da ogni buco nero esistente nascerebbe un nuovo universo, ideata da Smolin. Le dimensioni parallele sono contemplate anche in tutti i modelli correlati al concetto di D-brane, classe di P-brane inerenti alla teoria delle stringhe. Il concetto di multiverso fu proposto in modo serio per la prima volta nella cosiddetta "interpretazione a molti mondi" della meccanica quantistica di Hugh Everett III, nella sua tesi di dottorato (The Many-Worlds Interpretation of Quantum Mechanics, abbreviata in MWI): ogni misura quantistica porta alla divisione dell'universo in tanti universi paralleli quanti sono i possibili risultati dell'operazione di misura. La teoria del multiverso proposta da MWI ha un parametro di tempo condiviso. In molte delle sue formulazioni, gli universi costituenti il multiverso sono strutturalmente identici, e possono esistere in stati diversi anche se possiedono le stesse leggi fisiche e gli stessi valori delle costanti fondamentali. Gli universi costituenti sono inoltre non-comunicanti, nel senso che non può esservi transito di informazioni tra di essi, anche se nell'ipotesi di Everett potenzialmente potrebbero esercitare un'azione reciproca.
«Le dimensioni del Multiverso sono così smisurate che hanno come conseguenza che da qualche parte esistono altri esseri uguali a noi, ma non rischiamo di incontrarli. La distanza che dovremmo percorrere è così grande che il numero di chilometri ha più cifre di quante sono le particelle dell'Universo conosciuto.»
Altre interpretazioni della molti-mondi sono quella di Copenaghen e quella delle "storie consistenti". In queste ipotesi, lo stato dell'intero multiverso è correlato agli stati degli universi costitutivi dalla sovrapposizione quantistica, ed è descritto da una singola funzione d'onda universale. Simili a questa visione sono l'interpretazione a molteplici storie di Feynman e quella di Zeh a molte menti. L'interpretazione a molti mondi (Many Worlds Interpretation) non può spiegare l'apparente universo antropico, perché le costanti fisiche di almeno una parte degli infiniti "mondi" possibili sono le stesse. L'interpretazione a molti mondi può, comunque, spiegare l'esistenza (all'apparenza improbabile) di un pianeta come la Terra. Vedasi l'Ipotesi della rarità della Terra: se l'interpretazione a molti mondi fosse corretta, esisterebbero così tante copie del nostro universo che l'esistenza di almeno un'altra Terra non sarebbe sorprendente.
Ora che conosciamo la definizione teorica di "dimensione alternativa" possiamo parlare di un argomento importantissimo: se gli universi paralleli esistessero (cosa possibile) come sarebbe strutturato il multiverso?
Multiversi plausibili
Inflazione eterna e teorie collegate
L'inflazione eterna è un modello di inflazione cosmologica dell'universo prevista da alcune estensioni della teoria del Big Bang e del modello standard della cosmologia. Il modello originale di Alan Guth di inflazione includeva una fase di "falso vuoto" con energia del vuoto positiva. Parti dell'universo in quella fase si espandono inflativamente e solo occasionalmente decadono ad uno stato di energia minore, non inflazionario, chiamato anche stato fondamentale. Nelle teorie dell'inflazione eterna la fase di espansione accelerata dell'universo dovuta all'inflazione continua per sempre, almeno in alcune regioni. Dato che queste regioni si espandono a tassi esponenziali, l'intero volume dell'universo cresce indefinitamente fino alla riproduzione di un nuovo universo. L'inflazione eterna è prevista da molti modelli differenti di inflazione cosmica. La teoria comprende anche la cosiddetta variante dell'inflazione caotica o teoria delle bolle (in inglese Bubble Theory), un modello di cosmologia frattale proposto da Andrej Linde. Secondo Linde, l'inflazione caotica implicherebbe l'effettiva e reale esistenza di un multiverso, nel caso un universo inflazionario infinito, di cui l'universo osservabile scaturito dal Big Bang è solo una parte.
Teoria delle Bolle
La teoria delle bolle è parte delle varie elaborazioni sul multiverso, del quale il nostro universo sarebbe solo una delle infinite "bolle", ed è uno dei pochi modelli di multiverso che segue completamente il modello standard della cosmologia e l'unico con evidenze significative nei dati osservativi. Questa teoria, nota anche come teoria dell'universo a bolle, è stata proposta negli anni ottanta e nel 2014 avrebbe ricevuto alcune conferme sperimentali, non condivise però da molti fisici, in quanto i risultati di BICEP2 confliggerebbero con quelli raccolti successivamente dalla sonda Planck Surveyor. Come altre teorie inflazionistiche, solitamente è contrapposta alle altre principali teorie fisiche della cosmologia, ossia quelle dell'universo oscillante o modelli ciclici, anche se secondo alcuni, come Michio Kaku, l'inflazione caotica si adatta alle proposte di "teorie del tutto" quali le stringhe e il Big Splat, spiegando il dopo Big Bang di questo universo e gli eventuali universi figli, mentre esse spiegano anche il "prima", ossia l'origine di tutti gli universi. Il concetto dell'universo a bolle comporta la creazione di universi derivanti dalla schiuma quantistica di un "universo genitore" o da un unico Big Bang. Alle scale più piccole (quantistiche, come la lunghezza di Planck), la spazio ribollirebbe a causa di fluttuazioni di energia e transizioni di fase, trovandosi in un falso vuoto, in quanto in fisica quantistica, a differenza che nella teoria della relatività generale, non esiste il vuoto o il nulla, nemmeno in caso di Big Rip o morte termica dell'universo. Il fenomeno del ribollire è forse dovuto al principio di indeterminazione di Heisenberg, e uno dei suoi effetti è la schiuma quantica. Il vuoto quantistico sarebbe infatti "schiumoso" e impossibile da lacerare e distruggere. Le fluttuazioni nel vuoto quantistico però continuano, da ciò il termine "caotica", e possono creare piccole bolle e wormhole. Se la fluttuazione di energia non è molto grande, un piccolo universo a bolla può formarsi, sperimentare una qualche espansione (come un palloncino che si gonfia), ed in seguito potrebbe contrarsi. Comunque, se la fluttuazione energetica è maggiore rispetto ad un certo valore critico, si forma un piccolo universo a bolla dall'universo parentale, va incontro ad un'espansione a lungo termine, e permette la formazione sia di materia che di strutture galattiche a grandissima scala. Esistono alcune somiglianze tra l'universo della teoria dello stato stazionario (una teoria di cosmologia non standard) e quello dell'inflazione eterna caotica: nel primo, senza Big Bang o alcuni little bang, l'espansione viene bilanciata dalla creazione continua di nuova materia (atomi di idrogeno, o di particelle di Planck), nel secondo dalla creazione di nuove bolle inflazionarie di spaziotempo, energia e materia. Entrambi aderiscono al principio cosmologico perfetto, per cui l'universo o il multiverso (nel secondo caso) appare uguale da qualsiasi punto all'ipotetico osservatore indipendentemente nello spazio e nel tempo, e spiegano (come le altre teorie del multiverso) il principio antropico e il fine-tuned Universe con la legge dei grandi numeri. L'inflazione del nostro universo sarebbe quindi cominciata dopo il Big Bang, ma lo stesso Big Bang potrebbe essere parte di una più grande inflazione di altri universi. A differenza delle teoria delle stringhe e dei suoi derivati, questa teoria non è una potenziale teoria del tutto, non spiegando cosa dà origine alle regole quantistiche.
Teoria nei dettagli
Nella teoria delle bolle, sostenuta da Andrej Linde riprendendo alcune teorie del passato, ogni bolla inflazionaria di questa "schiuma quantica" è invece un universo (come il nostro), collegato ad altri universi tramite i wormhole teorizzati da Einstein; alcuni di questi universi sono abitabili, altri no, e ognuno ha la sua storia ed evoluzione specifica, passata e futura. Nell'inflazione teorizzata da Linde, oltre l'universo osservabile lo spaziotempo può essere ancora in uno stato di inflazione, con altri universi "bolla" che si formano ogni volta che in qualche punto l'inflazione si ferma. Se il nostro universo fosse l'unico esistente, si avrebbe quindi bisogno di una spiegazione scientifica del perché sembra così ben calibrato per consentire un certo ordine e la vita biologica. Se invece non è che uno dei tanti esistenti, ognuno di essi può avere parametri differenti e differenti costanti, e solo a un universo (o a pochi) è capitato di avere valori tali che hanno permesso la vita. Alcuni risultati di osservazione e sperimentazione confermerebbero a grandi linee questa teoria, verificando la teoria inflazionistica, tramite le onde gravitazionali, che conduce, secondo Linde e Alan Guth, alla variante di un multiverso a bolle. Una teoria formulata dal fisico Alexander Vilenkin afferma che il multiverso è formato da tanti universi, ognuno dei quali si trova confinato in una bolla in inflazione eterna (cioè in costante espansione esponenziale), incluso il nostro (ogni singolo universo, almeno rispetto ad osservatori situati al suo interno, deve implicare una genesi riconducibile o affine ad un Big-bang). In alcune zone di una bolla la deformazione dello spazio-tempo è tale da portare alla formazione di una nuova bolla, aprire un varco verso un nuovo universo; dopo un certo periodo, sempre per effetto della deformazione, la nuova bolla si stacca e si forma un universo del tutto indipendente, senza alcun punto di collegamento con quello di partenza. Le regioni formate dall'inflazione caotica si espandono a tassi esponenziali, l'intero volume dell'universo cresce indefinitamente e sempre più rapidamente. Quindi l'universo sarebbe infinito ed eterno e si autoriprodurrebbe tramite queste bolle che da esso si staccano e così via. Questo può essere già accaduto: finite ed osservabili sono solo alcune parti di questo multiverso, ma nel frattempo se ne sono già generati altri, come accade con la riproduzione cellulare in biologia (vedere anche: selezione naturale cosmologica). Il nostro universo (o la parte da noi visibile e studiabile) non è che una piccolissima zona dell'esistente, il cosiddetto universo osservabile). L'inflazione eterna è prevista da molti modelli differenti di inflazione cosmica. Il modello originale di Alan Guth di inflazione includeva un fase di "falso vuoto" con energia del vuoto positiva. Se il vuoto non è lo stato a minore energia (un falso vuoto quindi), potrebbe collassare nello stato a minore energia. Ciò prende il nome di disastro della metastabilità del vuoto. Questo fatto cambierebbe completamente il nostro universo; le costanti fisiche potrebbero avere valori diversi, che altererebbero le basi della materia. Parti dell'universo in quella fase si espandono inflativamente e solo occasionalmente decadono occasionalmente ad uno stato di energia minore, non inflazionario, chiamato anche stato fondamentale. Nell'inflazione caotica, proposta dal fisico Andrej Linde, i picchi nell'evoluzione di un campo scalare, che determina l'energia del vuoto, corrispondono a regioni in cui l'inflazione domina. Il falso vuoto dovrebbe decadere esponenzialmente, tuttavia le bolle di falso vuoto potrebbero anche espandersi esponenzialmente in modo tale che una regione dominata dal falso vuoto non sparisce mai. In queste regioni di falso vuoto occasionalmente potrebbero crearsi nuove bolle, e quindi nuovi universi, come semplice risultato del decadimento del falso vuoto. Il periodo inflativo dell'universo continua quindi a perdurare per sempre in diverse regioni dello spazio tempo. L'universo che noi effettivamente osserviamo sarebbe quindi solo una delle possibili bolle che si sono sviluppate, molti altri universi anche simili al nostro sarebbero quindi possibili. Talvolta le bolle possono toccarsi e influire sullo spaziotempo con nuova produzione di energia.
Teoria del Multiverso di David Deutsch
Nella "Teoria del Multiverso" il fisico David Deutsch, uno dei massimi teorizzatori viventi della computazione quantistica e dei computer quantistici, vede proprio nella realizzabilità di tali dispositivi la prova sperimentale di una iperstruttura cosmologica detta multiverso.
Teoria delle stringhe
In fisica teorica la teoria delle stringhe (calco dell'inglese string theory; il significato più comune e corretto del termine string è "corda") è una teoria, ancora in fase di sviluppo, che tenta di conciliare la meccanica quantistica con la relatività generale e che potrebbe costituire una teoria del tutto. Si fonda sul principio secondo cui la materia, la radiazione e, sotto certe ipotesi, lo spazio e il tempo siano la manifestazione di entità fisiche fondamentali che, a seconda del numero di dimensioni in cui si sviluppano, sono chiamate stringhe o p-brane. La teoria delle stringhe è un modello fisico i cui costituenti fondamentali sono oggetti a una dimensione (le stringhe), invece che a dimensione nulla (i punti) come nelle teorie precedenti, e perciò evita i problemi connessi alla presenza di particelle puntiformi. La teoria delle stringhe descrive oggetti che possono avere dimensioni nulle (quindi punti), una dimensione (stringhe), due dimensioni (membrane) o possedere un numero D di dimensioni maggiore di due (D-brane). Il termine "teoria delle stringhe" si riferisce sia alla teoria bosonica a 26 dimensioni, sia alla teoria supersimmetrica a 10 dimensioni (teoria delle superstringhe). Tuttavia nell'uso comune fa riferimento alla variante supersimmetrica, mentre l'altra teoria prende il nome di teoria di stringa bosonica. Si spera che la teoria possa essere una teoria del tutto che descriva le forze fondamentali, ossia che possa fornire un modello per la gravità quantistica, insieme alle altre interazioni fondamentali contemplate dal Modello standard. Sebbene la versione supersimmetrica includa anche i fermioni, i "mattoni" costituenti la materia, non è chiaro se descriva un universo con le caratteristiche di forze e materia come quello osservato. A un livello più concreto la teoria delle stringhe ha originato progressi nella matematica dei nodi, negli spazi di Calabi-Yau e in molti altri campi. La teoria delle stringhe ha anche gettato maggior luce sulle teorie di gauge supersimmetriche, un argomento che include possibili estensioni del Modello Standard (di cui abbiamo parlato in un articolo che puoi leggere cliccando qui). La teoria delle stringhe prese le mosse da un articolo che Gabriele Veneziano scrisse per spiegare il comportamento degli adroni. Durante gli esperimenti condotti con gli acceleratori di particelle, i fisici avevano osservato che lo spin di un adrone non è mai maggiore di un certo multiplo della radice della sua energia. Nessun semplice modello adronico, ad esempio quello che li considera composti da una serie di particelle più piccole legate da un qualche tipo di forza, spiega tali relazioni. Nel 1968 Veneziano, allora ricercatore presso il CERN di Ginevra, intuì che una vecchia formula matematica denominata funzione beta di Eulero, ideata 200 anni prima dal matematico svizzero Leonhard Euler, forniva informazioni importanti sull'interazione forte, senza però spiegare la correlazione. Nel 1970 Nambu, Nielsen e Susskind tentarono una spiegazione, rappresentando la forza nucleare attraverso stringhe vibranti ad una sola dimensione; era però un'ipotesi che contraddiceva le esperienze. La comunità scientifica perse quindi interesse per la teoria e il Modello standard, con le sue particelle e i suoi campi, rimase dominante. Poi, nel 1974, Schwarz e Scherk, e indipendentemente Yoneya, studiarono i modelli con caratteristiche da messaggero della vibrazione di stringa e trovarono che le loro proprietà combaciavano esattamente con le particelle mediatrici della forza gravitazionale - i gravitoni. Schwarz e Scherk argomentarono che la teoria delle stringhe non aveva avuto successo perché i fisici ne avevano frainteso gli scopi. Questo condusse allo sviluppo della teoria di stringa bosonica, che è ancora la versione solitamente insegnata. Con lo sviluppo della cromodinamica quantistica, il bisogno originario di una teoria degli adroni fu diretto verso una teoria dei quark. La teoria di stringa bosonica è formulata in termini di azione di Poljakov, una quantità matematica usata per prevedere come le stringhe si muovano nello spazio-tempo. Applicando le idee della meccanica quantistica all'azione di Poljakov - procedura nota come quantizzazione - si nota che ogni stringa può vibrare in molti modi diversi, e che ogni stato di vibrazione rappresenta un tipo diverso di particella. La massa di cui è dotata la particella e i vari modi in cui può interagire sono determinati dai modi in cui la stringa vibra - essenzialmente, dalla nota che la stringa produce vibrando. La scala delle note, ad ognuna delle quali corrisponde una particella, è denominata spettro energetico della teoria. Questi primi modelli includevano sia stringhe aperte, con due punti terminali definiti, che stringhe chiuse, con gli estremi congiunti a formare un anello, o loop. I due tipi di stringa si comportano in maniera leggermente diversa, producendo due spettri. Non tutte le moderne teorie delle stringhe usano entrambi i tipi. Alcune comprendono solo tipologie chiuse: ultimamente infatti i teorici hanno abbandonato l'idea di stringa aperta, impostando i loro studi sulla tipologia di stringa ad anello. Ad ogni modo anche la teoria bosonica ha problemi. Fondamentalmente ha una peculiare instabilità, portando al decadimento dello spazio-tempo. In più, come il nome suggerisce, lo spettro di particelle contiene solo bosoni, particelle con spin intero come il fotone. I bosoni sono un ingrediente indispensabile nell'universo, ma non gli unici costituenti. Gli studi su come una teoria delle stringhe debba includere i fermioni nel suo spettro conducono alla supersimmetria, una relazione matematica tra bosoni e fermioni che è ora un settore di studio indipendente. Le teorie delle stringhe che includono vibrazioni fermioniche sono conosciute come teorie delle superstringhe; ne sono stati descritti parecchi tipi. Tra il 1984 e il 1986 i fisici compresero che la teoria delle stringhe avrebbe potuto descrivere tutte le particelle elementari e le loro interazioni, e considerarono la teoria delle stringhe come l'idea più promettente per arrivare a unificare la fisica. Questa prima rivoluzione delle superstringhe era iniziata nel 1984 con la scoperta dell'annullamento dell'anomalia nella teoria delle stringhe di tipo I da parte di Green e Schwarz. L'anomalia fu eliminata grazie al meccanismo di Green-Schwarz. Altre inaspettate e rivoluzionarie teorie, come la stringa eterotica, furono presentate nel 1985. Negli anni novanta Witten e altri trovarono forti prove a dimostrazione che le differenti teorie delle superstringhe non sono che i diversi limiti di una sconosciuta teoria a undici dimensioni, chiamata M-teoria. Questi studi stimolarono la seconda rivoluzione delle superstringhe. Quando Witten la chiamò M-teoria, non specificò che cosa fosse la M, forse perché non si sentiva in diritto di denominare una teoria che non era in grado di descrivere interamente, e indovinare che cosa significhi la M è diventato un gioco tra i fisici teorici. La M talvolta viene fatta corrispondere a Mistero, Magia o Madre. Ipotesi più serie includono Matrice o Membrana. Glashow ha notato che la M può essere un rovesciamento di W, iniziale di Witten. Altri ipotizzano Mancante, Mostruoso o anche Murky (oscura)[senza fonte]. Secondo lo stesso Witten, come detto in PBS documentary, basato su The Elegant Universe di Greene, la M in M-teoria sta per «magia, mistero, o matrice, a piacere». Negli ultimi anni grazie alla pubblicazione di articoli e libri da parte di fisici e matematici di tutto il mondo, la teoria delle stringhe ha acquisito maggiore notorietà, non limitando la conoscenza degli straordinari progressi della teoria ad una stretta cerchia di scienziati. Alcuni recenti sviluppi portano alle D-brane, oggetti che i fisici cominciano a includere in alcune teorie che comprendono le stringhe aperte della teoria delle superstringhe. Se da un lato comprendere i dettagli delle teorie delle stringhe e delle superstringhe richiede la conoscenza di una matematica abbastanza sofisticata, alcune proprietà qualitative delle stringhe quantistiche possono essere capite in modo abbastanza intuitivo. Per esempio, le stringhe sono soggette a tensione, più o meno come le tradizionali corde degli strumenti; questa tensione è considerata un parametro fondamentale della teoria. La tensione della stringa è strettamente collegata alla sua dimensione. Si consideri una stringa chiusa ad anello, libera di muoversi nello spazio senza essere soggetta a forze esterne. La sua tensione tenderà a farla contrarre in un anello sempre più stretto. L'intuizione classica suggerisce che essa potrebbe ridursi ad un punto, ma questo contraddirebbe il principio di indeterminazione di Heisenberg. La dimensione caratteristica della stringa sarà quindi determinata dall'equilibrio fra la forza di tensione, che tende a renderla più piccola, e l'effetto di indeterminazione, che tende a mantenerla "allargata". Di conseguenza, la dimensione minima della stringa deve essere collegata alla sua tensione. Prima degli anni novanta, i teorici delle stringhe ritenevano che ci fossero cinque tipi diversi di superstringhe: tipo I (aperte e chiuse), tipo IIA e tipo IIB (entrambe chiuse), e le due teorie di stringhe eterotiche (SO(32) e E8×E8). Si pensava che tra queste cinque teorie candidate, solo una fosse la corretta teoria del tutto, e che fosse la teoria il cui basso limite energetico, con dieci dimensioni spaziotemporali compattate a quattro, si armonizzava con la fisica che si osserva nel mondo. Ma ora si sa che questa ingenua rappresentazione è sbagliata e che le cinque teorie delle superstringhe sono connesse a un'ulteriore teoria, come se fossero ognuna un caso speciale di una teoria più generale. Queste teorie sono collegate da trasformazioni che sono chiamate dualità. Se due teorie sono messe in relazione da una trasformazione di dualità, significa che la prima teoria può essere trasformata in qualche modo così da finire per essere uguale alla seconda teoria. Le due teorie sono dette essere tra loro duali sotto quel tipo di trasformazione. Detto con altre parole, le due teorie sono differenti descrizioni matematiche dello stesso fenomeno. Queste dualità legano quantità che si pensavano separate. Scale di distanza grandi e piccole, come pure forze d'accoppiamento forti e deboli, sono quantità che hanno sempre sottolineato limiti molto distinti nel comportamento di un sistema fisico, sia nella teoria classica che nella fisica quantistica delle particelle. Ma le stringhe possono eliminare le differenze tra grande e piccolo, forte e debole ed è così che le cinque teorie in apparenza molto diverse finiscono per essere correlate l'una con l'altra. Supponendo di essere in uno spazio-tempo in dieci dimensioni, una di queste è temporale e le altre nove sono spaziali. Facendo in una di queste nove dimensioni un cerchio di raggio R, muovendosi in una direzione per una distanza L = 2πR si fa un giro attorno al cerchio e si torna al punto di partenza. Una particella che si muove lungo questo cerchio avrà un momento quantizzato attorno al cerchio, e questo contribuirà all'energia totale della particella. Ma una stringa è molto diversa, perché può avvolgersi intorno al cerchio. Il numero di volte che la stringa si avviluppa al cerchio è chiamato numero di avvolgimento, anch'esso quantizzato. Nella teoria delle stringhe il momento e il numero di avvolgimento possono essere scambiati purché si scambi anche il raggio R del cerchio con la grandezza L^2 st/R, dove L st è la lunghezza della stringa. Se R è molto più piccolo della lunghezza della stringa, allora la grandezza L^2 st/R sarà molto grande. Così si scambia la piccola scala di grandezza con quella grande. Questo tipo di dualità, tra scale grandi e piccole, è chiamata T-dualità. La T-dualità relaziona la superstringa di tipo IIA con la superstringa di tipo IIB. Ciò significa che se si prende il tipo IIA e il tipo IIB e le si compatta su un cerchio, invertendo il momento e il numero di avvolgimento e invertendo la scala di distanza, una teoria cambia in un'altra. Vale la stessa regola per le due teorie eterotiche. Inoltre, ogni forza ha una costante di accoppiamento. Per l'elettromagnetismo, è proporzionale al quadrato della carica elettrica. Quando i fisici studiarono il comportamento quantistico dell'elettromagnetismo, non potevano risolvere esattamente l'intera teoria, così la rompevano in piccoli pezzi, ciascuno dei quali si poteva risolvere con una differente potenza della costante di accoppiamento. A normali energie nell'elettromagnetismo, la costante è piccola, per cui i primi piccoli pezzi producono con buona approssimazione il valore reale. Ma se la costante cresce, questo metodo di calcolo viene meno. Anche le teorie delle stringhe hanno una costante di accoppiamento, ma diversamente dalle teorie di particelle, la costante non è solo un numero, ma dipende da una della modalità di oscillazione delle stringhe, chiamata dilatone. Cambiando il campo del dilatone con uno minore, si cambia una costante di accoppiamento elevata con una più piccola. Questa simmetria è chiamata S-dualità. Se due teorie delle stringhe sono relazionate dalla S-dualità, allora una teoria con una forte costante di accoppiamento è uguale ad un'altra teoria con una costante bassa. La teoria con forte costante non può essere compresa per mezzo di un'espansione in una serie, ma la teoria con bassa costante sì. Così se le teorie sono in relazione attraverso la S-dualità, conoscendo la teoria debole, è possibile conoscere anche quella forte. Le teorie delle superstringhe relazionate dalla S-dualità sono: la teoria di superstringhe di tipo I con la superstringa eterotica SO32, e la teoria di tipo II con sé stessa. Una caratteristica interessante della teoria delle stringhe è che essa predice il numero di dimensioni che l'Universo dovrebbe avere. Né la teoria dell'elettromagnetismo di Maxwell né la teoria della relatività di Einstein dicono nulla sull'argomento: entrambe le teorie richiedono che i fisici inseriscano "a mano" il numero delle dimensioni. Invece, la teoria delle stringhe consente di calcolare il numero di dimensioni dello spazio-tempo dai suoi principi base. Tecnicamente, questo accade perché il principio di invarianza di Lorentz può essere soddisfatto solo in un certo numero di dimensioni. Più o meno questo equivale a dire che se si misura la distanza fra due punti e poi si ruota l'osservatore di un certo angolo e si misura di nuovo, la distanza osservata rimane la stessa solo se l'universo ha un ben preciso numero di dimensioni. Il problema è che quando si esegue questo calcolo, il numero di dimensioni dell'universo non è quattro, come ci si potrebbe attendere (tre assi spaziali e uno temporale), ma ventisei. Più precisamente, le teorie bosoniche implicano 26 dimensioni, mentre le superstringhe la M-teoria richiede 10 o 11 dimensioni. Nelle teorie di stringa bosonica, le 26 dimensioni risultano dall'equazione di Poljakov
Barra delle equazioni per i lettori più curiosi
Comunque, questi modelli sembrano in contraddizione con i fenomeni osservati. I fisici di solito risolvono il problema in due diversi modi. Il primo consiste nel compattare le dimensioni extra; cioè, si suppone che le 6 o 7 dimensioni extra producano effetti fisici su un raggio così piccolo da non poter essere rilevate sperimentalmente. Senza aggiungere i flussi, si riesce ad ottenere la risoluzione del modello a 6 dimensioni con gli spazi di Calabi-Yau. In 7 dimensioni, essi sono chiamati varietà G2 e in 8 varietà Spin(7). In sostanza, queste dimensioni extra sono matematicamente compattate con successo facendole ripiegare su sé stesse. Un'analogia molto usata è di considerare lo spazio multidimensionale come un tubo di gomma. Se si guarda il tubo da una certa distanza sembra a una sola dimensione, la lunghezza. Questo corrisponde alle quattro dimensioni macroscopiche cui si è abituati normalmente. Se però ci si avvicina al tubo, si scopre che ha anche una seconda dimensione, la circonferenza, visibile solo se si è vicini al tubo, proprio come le dimensioni extra degli spazi di Calabi-Yau sono visibili solo su lunghezze estremamente piccole, non facilmente osservabili. (Ovviamente, un normale tubo per il giardino esiste nelle tre dimensioni spaziali, ma per consentire l'analogia si trascura il suo spessore e si considera solo il moto sulla superficie del tubo. Un punto sulla superficie del tubo può essere individuato con due numeri, la distanza da una delle estremità e una distanza sulla circonferenza, proprio come un punto sulla superficie terrestre può essere individuato univocamente dalla latitudine e dalla longitudine. In entrambi i casi l'oggetto ha due dimensioni spaziali. Come la Terra, i tubi da giardino hanno un interno, una regione che richiede una dimensione extra; però, a differenza della Terra, uno spazio di Calabi-Yau non ha un interno). Un'altra possibilità è di essere bloccati in un sottospazio a "3+1" dimensioni dell'intero universo, ove il 3+1 ricorda che il tempo è una dimensione di tipo diverso dallo spazio. Siccome questa idea implica oggetti matematici chiamati D-brane, essa è nota come mondo-brana. In entrambi i casi la gravità, agendo nelle dimensioni nascoste, produce altre forze non gravitazionali, come l'elettromagnetismo. In linea di principio, quindi, è possibile dedurre la natura di queste dimensioni extra imponendo la congruenza con il modello standard, ma questa non è ancora una possibilità pratica.
A tutt'oggi, la teoria delle stringhe non è verificabile, anche se ci sono aspettative che nuove e più precise misurazioni delle anisotropie della radiazione cosmica di fondo, possano dare le prime conferme indirette. Indubbiamente non è l'unica teoria in sviluppo a soffrire di questa difficoltà; qualunque nuovo sviluppo può passare attraverso una fase di non verificabilità prima di essere definitivamente accettato o respinto. Come Richard Feynman scrive ne Il carattere della Legge Fisica, il test chiave di una teoria scientifica è verificare se le sue conseguenze sono in accordo con le misurazioni ottenute sperimentalmente. Non importa chi abbia inventato la teoria, "quale sia il suo nome", e neanche quanto la teoria possa essere esteticamente attraente: "se essa non è in accordo con la realtà sperimentale, essa è sbagliata" (ovviamente, ci possono essere fattori collaterali: qualcosa può essere andato male nell'esperimento, o forse chi stava valutando le conseguenze della teoria ha commesso un errore: tutte queste possibilità devono essere verificate, il che comporta un tempo non trascurabile). Nessuna versione della teoria delle stringhe ha avanzato una previsione che differisca da quelle di altre teorie - almeno, non in una maniera che si possa verificare sperimentalmente. In questo senso, la teoria delle stringhe è ancora in uno "stato larvale": essa possiede molte caratteristiche di interesse matematico, e può davvero diventare estremamente importante per la comprensione dell'Universo, ma richiede ulteriori sviluppi prima di poter diventare verificabile. Questi sviluppi possono essere nella teoria stessa, come nuovi metodi per eseguire i calcoli e derivare le predizioni, o possono consistere in progressi nelle scienze sperimentali, che possono rendere misurabili quantità che al momento non lo sono. Si potrebbe tuttavia verificare la veridicità della teoria indirettamente analizzando i gravitoni. Gli attuali acceleratori di particelle non sono in grado di tracciare il momento in cui un gravitone sfugge per passare a una brana vicina. Forse LHC potrà darci nuove risposte. Considerare la teoria sotto il solo profilo della sua verificabilità è comunque estremamente riduttivo ed apre il campo ad una serie di problemi. Non è infatti sufficiente l'accordo con i dati sperimentali per conferire lo status di teoria scientifica. Tutte le mere descrizioni di un fenomeno (sofisticatissime o banalissime come: "il sole sorge ogni mattina") sono in accordo con i dati sperimentali, e forniscono anche previsioni verificabili, ma senza essere per questo considerate teorie scientifiche. Uno dei caratteri fondamentali di una teoria scientifica è invece il requisito popperiano della falsificabilità cioè della capacità di produrre almeno un enunciato da cui dipenda l'intera teoria e questo potrebbe essere problematico se si considera la teoria delle stringhe solo come teoria di grande unificazione. La teoria delle stringhe invece ha dato delle predizioni ben precise tramite la corrispondenza AdS/CFT sulla viscosità dei fluidi fortemente accoppiati che sono in accordo con i dati sperimentali osservati al RHIC. Da un punto di vista più matematico, un altro problema è che la maggior parte della teoria delle stringhe è ancora formulata mediante l'utilizzo di metodi matematici perturbativi. Potrebbe sembrare un problema da poco dal momento che anche la trattabilità di moltissimi problemi di una teoria di sicuro successo come la teoria quantistica dei campi è legata all'uso di metodi perturbativi. Ma nella teoria delle stringhe i metodi perturbativi comportano un così alto grado di approssimazione che la teoria non è in grado di identificare quali degli spazi di Calabi-Yau siano candidati a descrivere l'universo. La conseguenza è che essa non descrive un solo universo, ma qualcosa come 10500 universi, ciascuno dei quali può avere diverse leggi fisiche e costanti. Sebbene le tecniche non-perturbative siano considerevolmente progredite, manca tuttavia una completa trattazione non-perturbativa della teoria. In realtà ammettere 10500 vuoti diversi non solo non è un problema, ma anzi permette l'unico meccanismo noto al momento per spiegare il valore attuale della costante cosmologica seguendo un'idea di Steven Weinberg. Inoltre, un valore molto grande di vuoti diversi è tipico di qualunque tipo di materia accoppiata alla gravità e si ottiene anche quando si accoppia il modello standard. Potremmo alla fine essere in grado di osservare le stringhe in maniera significativa, o almeno ottenere informazioni sostanziali osservando fenomeni cosmologici che possano chiarire gli aspetti della fisica delle stringhe. In particolare, visti i dati dell'esperimento WMAP, si suppone che gli esperimenti del satellite Planck dovrebbero far luce sulle condizioni iniziali dell'Universo, misurando con estrema precisione le anisotropie del fondo a microonde. Nei primi anni 2000 i teorici delle stringhe hanno riportato in auge un vecchio concetto: la stringa cosmica. Le stringhe cosmiche, originariamente introdotte negli anni ottanta, sono oggetti differenti da quelli delle teorie delle superstringhe. Per alcuni anni le stringhe cosmiche sono state un modello molto in voga per spiegare vari fenomeni cosmici, come ad esempio la formazione delle galassie nelle prime epoche dell'universo. Ma esperimenti successivi - ed in particolare più precise misurazioni della radiazione cosmica di fondo - non sono stati in grado di confermare le ipotesi del modello delle stringhe cosmiche che per questo motivo fu abbandonato. Alcuni anni più tardi è stato osservato che l'universo in espansione può aver "stirato" una stringa "fondamentale" (del tipo che viene ipotizzato nella teoria delle superstringhe) fino ad allungarla a dimensioni macroscopiche. Una stringa così allungata può assumere molte delle proprietà della stringa del "vecchio" tipo, rendendo attuali ed utili i precedenti calcoli. Inoltre le moderne teorie delle superstringhe ipotizzano altri oggetti che potrebbero facilmente essere interpretati come stringhe cosmiche, ad esempio le D1-brane (dette anche D-stringhe) monodimensionali fortemente allungate. Come fa notare il fisico teorico Tom Kibble "i cosmologi delle teorie delle stringhe hanno scoperto stringhe cosmiche rovistando in ogni dove nel sottobosco". Le precedenti proposte metodologiche per ricercare le stringhe cosmiche possono essere ora utilizzate per investigare la teoria delle superstringhe. Ad esempio gli astronomi hanno anche riscontri numerosi di cosa potrebbe essere la lente gravitazionale indotta da stringhe. Superstringhe, D-brane ed altri tipi di stringhe stirate fino alla scala intergalattica emettono onde gravitazionali che potrebbero essere rilevate utilizzando esperimenti del tipo LIGO. Esse possono anche provocare lievi irregolarità nella radiazione cosmica di fondo ancora impossibili da rilevare ma probabilmente osservabili in un prossimo futuro. Sebbene accattivanti, queste prospettive cosmologiche sono carenti sotto un punto di vista: come precedentemente detto, la verifica sperimentale di una teoria richiede che i test siano in grado, in via di principio, di "rendere falsa" la teoria stessa. Per esempio, se si osservasse che il Sole durante un'eclissi solare non deflette la luce a causa della sua interazione gravitazionale, la teoria della relatività generale di Einstein sarebbe dimostrata erronea (naturalmente escludendo la possibilità di un errore nell'esperimento). Il fatto di non trovare stringhe cosmiche non dimostrerebbe che la teoria delle stringhe è fondamentalmente sbagliata ma solo che è sbagliata l'idea specifica di una stringa fortemente allungata a livello cosmico. Sebbene si possano fare, in via teorica, numerose misurazioni che dimostrino che la teoria delle stringhe è valida, fino ad ora gli scienziati non hanno escogitato dei "test" rigorosi. Alcuni dei modelli di spazi di Calabi-Yau prevedono la possibile esistenza di particelle dotate di carica elettrica frazionaria, secondo rapporti diversi da quelli finora attribuiti alle cariche quark e antiquark. L'osservazione futura di tali particelle potrebbe essere una traccia della validità della teoria, sebbene non decisiva, visto che la sua eventuale fondatezza rimane compatibile anche con l'inesistenza di tali cariche frazionarie. Nel gennaio 2007 ricercatori dell'Università della California a San Diego, della Carnegie Mellon University e della Università del Texas a Austin hanno sviluppato un test per la teoria delle stringhe. Il test si basa sulla misura della diffusione dei bosoni W quando vengono fatti collidere con opportuni bersagli e dovrebbe essere svolto all'interno del Large Hadron Collider, l'unico acceleratore di particelle in grado di fornire l'energia necessaria per l'esperimento.
Teoria delle superstringhe
La teoria delle superstringhe è un tentativo di teoria del tutto, ovvero di descrivere tutte le particelle e le forze fondamentali della natura in un'unica teoria che considera queste entità come "vibrazioni" di sottilissime stringhe (o corde) supersimmetriche. Nel linguaggio comune il termine è sinonimo di teoria delle stringhe. La teoria delle superstringhe (super perché supersimmetriche) spiega a livello teorico:
- l'esistenza dei gravitoni
- il perché della presenza delle tre famiglie di particelle
- perché ogni famiglia di particelle abbia certe proprietà e non altre:
- spin
- carica
- massa
È considerata da alcuni autori una delle più promettenti teorie della gravità quantistica. Il termine di teoria delle superstringhe è in realtà una contrazione del termine più corretto di "teoria supersimmetrica delle stringhe" perché diversamente dalla teoria bosonica delle stringhe, è la versione della teoria delle stringhe che include i fermioni e la supersimmetria. Non ci sono fino a questo momento predizioni quantitative sperimentali che possano essere verificate (o falsificate). Al momento il problema più importante della fisica teorica consiste nell'armonizzare la relatività generale, che descrive la gravità e viene applicata al macrocosmo (stelle, galassie, ammassi), con la meccanica quantistica che descrive le altre tre forze fondamentali che descrivono il microcosmo (elettroni, fotoni, quark). Lo sviluppo di una teoria quantistica dei campi riguardanti una forza fornisce invariabilmente probabilità infinite (e quindi prive di utilità). I fisici teorici hanno sviluppato una tecnica matematica, detta rinormalizzazione, che elimina gli infiniti dell'elettromagnetismo, nella interazione nucleare forte e nell'interazione nucleare debole, ma non quelli della gravità (senza introdurre un numero infinito di termini alla definizione Lagrangiana della teoria, rischiando la località, o altrimenti un numero finito di termini che non rispettano l'invarianza di Lorentz). Quindi lo sviluppo di una teoria quantistica della gravità deve essere espressa in maniera differente rispetto alle teorie che riguardano le altre forze della natura. L'idea alla base della teoria è che i costituenti fondamentali della realtà siano "stringhe" o "corde" di lunghezza pari a quella di Planck (1,616x10−35 m) che vibrano a frequenze diverse. Il gravitone, la particella proposta quale mediatrice della gravità, per esempio, è descritta dalla teoria come una stringa che vibra con ampiezza d'onda uguale a zero. Questa particella nasce dalle oscillazioni nello spazio di una stringa chiusa; l'elisione di componenti energetiche sui vari piani di vibrazione rende possibile sia l'esistenza di particelle con massa nulla (ad esempio fotoni), sia di particelle dotate di massa non nulla ed in cui alcune componenti energetiche non si elidono. Un'altra condizione prevista dalla teoria è che non vi siano differenze misurabilmente riscontrabili tra stringhe che si "accartocciano" intorno a dimensioni più piccole di loro stesse e quelle che si muovono lungo dimensioni più grandi (cioè, gli effetti in una dimensione di grandezza R sono uguali a quelli in una dimensione di grandezza 1/R). Le singolarità sono evitate in virtù del fatto che le conseguenze che si potrebbero osservare in un Big Crunch non raggiungono mai lo zero. Infatti, se l'universo dovesse iniziare un processo di Big Crunch, la teoria delle stringhe ci dice che non potrebbe mai diventare più piccolo delle dimensioni di una stringa e che a quel punto dovrebbe iniziare ad espandersi. Il nostro spazio fisico possiede solo 4 dimensioni apprezzabili alla nostra scala di grandezza e di ciò bisogna tenere conto in qualsiasi teoria fisica; tuttavia, nulla vieta che una teoria affermi che vi siano dimensioni spaziali aggiuntive. Nel caso della teoria delle stringhe, vi sono evidenze secondo cui lo spazio-tempo richiede 10, 11 o addirittura 26 dimensioni. Il conflitto tra i dati osservati e la proposta teorica è risolto postulando che le dimensioni aggiuntive siano "arrotolate su se stesse" o meglio compattificate. Il modello a 6 dimensioni di Calabi-Yau può giustificare le dimensioni addizionali richieste dalla teoria delle superstringhe. È difficile "visualizzare" queste dimensioni perché possiamo muoverci soltanto in uno spazio a tre dimensioni. Un metodo per superare questo limite è quello di non tentare di visualizzarle, bensì di pensarle come numeri addizionali nelle equazioni che descrivono il mondo. Ciò apre la questione se questi "numeri extra" possano essere osservati direttamente mediante esperimenti. Questo, a sua volta, pone la questione se i modelli che derivano da questi calcoli astratti possano essere considerati "scientifici", visto che finora non è stato possibile dimostrarli con esperimenti: con la fisica conosciuta gli apparati sperimentali dovrebbero essere grandi più o meno quanto la nostra galassia. La teoria delle superstinghe non è la prima teoria a più dimensioni proposta (vedi la teoria di Kaluza-Klein). La moderna teoria delle stringhe si basa sulla matematica delle pieghe, dei nodi e della topologia sviluppatasi dopo Kaluza e Klein e che ha permesso negli ultimi tempi che le teorie fisiche fondate su dimensioni extra fossero molto più credibili di quanto non lo fossero ai tempi di Kaluza e Klein. Uno dei problemi con cui si dovevano confrontare i fisici favorevoli a questa teoria era l'esistenza di 5 differenti teorie delle superstringhe. Una soluzione a questo problema sembrò derivare dalla cosiddetta "seconda rivoluzione delle superstringhe" avvenuta negli anni novanta, la quale proponeva che le 5 teorie possano in realtà essere interpretate come 5 diversi aspetti di una teoria ancora più basilare: la M-teoria. Questa soluzione è però ancora allo stadio di congettura.
Le caratteristiche principali delle cinque teorie compatibili delle superstringhe sono:
- La teoria delle stringhe di Tipo I ha una supersimmetria in senso deca-dimensionale (16 supercariche). Questa teoria peculiare si basa su stringhe non orientate aperte e chiuse, mentre le altre sono basate su stringhe orientate chiuse.
- Le teorie delle stringhe di Tipo II hanno due supersimmetrie in senso deca-dimensionale (32 supercariche). Vi sono due tipi di stringhe tipo II, chiamate tipo IIA e tipo IIB, che differiscono tra di loro per il fatto che la teoria IIA è di tipo non-chirale (parità conservate) mentre la IIB è di tipo chirale (parità violata).
- Le teorie delle stringhe eterotiche sono basate su un ibrido particolare di una superstringa di tipo I e una stringa bosonica. Vi sono due tipi di stringhe eterotiche che differiscono riguardo al gruppo di gauge deca-dimensionale: la stringa eterotica E8×E8 e la stringa eterotica SO(32). Il nome di stringa eterotica SO(32) è lievemente impreciso riguardo ai gruppi di Lie SO(32) perché la teoria dà origine ad un quoziente Spin(32)/Z2 che non è equivalente a SO(32).
Le teorie di gauge chirali possono essere inconsistenti a causa di anomalie che compaiono quando alcuni diagrammi di Feynman a un loop determinano una rottura della simmetria di gauge nei loro effetti quantistici.
Teoria M
In fisica teorica la teoria M (dall'inglese M-theory) è una possibile teoria del tutto. La teoria, ancora incompleta, cerca di combinare le cinque teorie delle superstringhe e la supergravità a 11 dimensioni, includendo l'idea del mondo-brana e del multiverso. Il significato della lettera "M", che accompagna il nome della teoria, è stato oggetto di discussioni alla cui base è l'indecisione su di esso del suo stesso promotore, il fisico teorico Edward Witten. In origine, la lettera "M" stava per membrana (abbreviato in "brana"), termine designato per generalizzare le stringhe della teoria delle stringhe. Il fisico optò per un generico "teoria M" perché era il più scettico tra i suoi colleghi riguardo alla natura di tali membrane. Witten lasciò così il significato della "M" alla libera interpretazione del lettore, che poteva scegliere fra "magia", "mistero", "matrice" o (teoria) "madre". Ritornando però sull'argomento nel 2013, Witten ha chiarito alla giornalista Amanda Gefter quale sia il significato univoco della "M": "membrana". Witten era certo che i suoi colleghi scienziati avrebbero capito che la libertà di scelta lasciata in passato fosse solo uno scherzo e non immaginava la confusione creatasi all'interno della comunità scientifica internazionale. A seconda del substrato geometrico, la teoria M è associata a differenti teorie di superstringa (in differenti substrati geometrici) e questi limiti sono in correlazione tra loro in base al principio della dualità. Due teorie fisiche si definiscono duali se hanno effetti fisici identici dopo che sono state applicate determinate trasformazioni matematiche. Ecco le principali caratteristiche delle teorie di stringa conosciute:
Un'evoluzione dello spazio-tempo di stringa può essere descritta matematicamente dalle funzioni come X^y(0 t) che rappresentano il modo in cui le coordinate 0 t del piano bidimensionale della stringa variano nello spazio-tempo X^y. Una delle interpretazioni di questo risultato è che l'undicesima dimensione è sempre presente, ma invisibile, sia perché il suo raggio è proporzionale alla costante di accoppiamento della stringa, sia perché la teoria tradizionale perturbativa di stringa presume che sia infinitesimale. Un'altra interpretazione è che la dimensione non sia un concetto fondamentale della teoria M. Come si è precedentemente definito, sono cinque le teorie di superstringa conosciute: esse sono tutte consistenti; questa consistenza è il primo indizio che permette di pensare che esse siano anche in qualche modo legate l'una all'altra. Come i loro stessi nomi suggeriscono, alcune di loro sono chiaramente in relazione. Per esempio, il tipo IIA e il tipo IIB sono connessi da ciò che è conosciuto come T-dualità: questo significa che la descrizione matematica di un cerchio di raggio R nella teoria IIA corrisponde a quella di un cerchio di raggio 1/R nella teoria IIB. Questo è sicuramente un risultato di grande peso sia perché è definito attraverso un approccio quantistico, sia perché si può costruire ogni tipo di spazio semplicemente accoppiando tra loro dei cerchi in vari modi, con il risultato che ciò che è descritto in una teoria è esattamente equivalente anche nell'altra. Quindi si può passare con molta facilità da una teoria all'altra. Lo stesso tipo di ragionamento può essere applicato alle due teorie eterotiche, anch'esse relazionate dalla T-dualità: così, sempre partendo dall'esempio del cerchio, al raggio R della teoria SO(32) corrisponde come prima il raggio 1/R della teoria E8×E8. A questo punto, applicate le trasformazioni, è come se ci fossero solo tre superstringhe: il tipo I, il tipo II e l'eterotica. Ora entra in gioco la seconda dualità. È proprio la S-dualità che unisce la superstringa di tipo I con la teoria eterotica SO(32): infatti, particelle debolmente interagenti nel tipo I eguagliano particelle con interazioni di grande intensità nella teoria SO(32). In questo caso, il legame è più sottile, in quanto così si possono solo identificare i limiti delle rispettive teorie. Ci sono prove molto convincenti per poter sostenere che le due teorie siano di fatto le stesse, tuttavia queste non soddisfano totalmente i rigorosi criteri di coerenza matematici, che del resto sono indispensabili in una teoria come questa. Ma al di là di questo è comunque chiaro che le teorie siano legate in qualche modo. Perciò ora ci sono solo due superstringhe: quella che viene qui definita per brevità eterotica (ma che in realtà comprende anche il tipo I) e il tipo II. L'unificazione di queste ultime è il passo più problematico: deve infatti essere compiuto un ragionamento molto particolare.
- La teoria rappresenta le stringhe come oggetti estremamente piccoli e difficili da "vedere".
- La teoria quantistica adatta a descrivere i limiti energetici inferiori considera, piuttosto che le stringhe, particelle che si muovono nello spazio-tempo: è ciò che è conosciuto come teoria quantistica dei campi.
- Poiché le stringhe comprendono anche l'interazione gravitazionale, è lecito aspettarsi che per basse energie esse corrispondano alle comuni particelle, che però si muovono in un campo gravitazionale.
- La teoria delle stringhe gode di supersimmetria, la quale perciò dovrebbe apparire nelle approssimazioni delle descrizioni teoriche di stati a bassa energia.
Questi indizi fanno pensare che il corrispettivo della teoria delle superstringhe nelle approssimazioni a bassa energia sia una teoria della supergravità. È su questo genere di teorie che si sposta il problema. A questo proposito, per quanto riguarda 10 dimensioni esistono solo due teorie di supergravità, denominate, non a caso, tipo IIA e tipo IIB. Infatti alla teoria di superstringa IIA corrisponde, come limite energetico inferiore, la supergravità IIA e similarmente la stringa IIB si sviluppa nella supergravità IIB. Il fatto poi che le due teorie eterotiche possano essere ridotte ai due tipi II, proprio nel limite energetico inferiore già più volte citato, sembra fornire l'evidenza della possibilità di connessione tra le teorie. Ma è con l'ausilio della topologia che si è potuto rinforzare questo, in apparenza debole, legame. Edward Witten, nel 1995, ipotizzò che la supergravità di tipo IIA, corrispondente alle superstringhe eterotiche SO(32) e E8×E8 e alla superstringa tipo IIA, avrebbe potuto essere ottenuta attraverso riduzioni dimensionali da un'unica teoria della supergravità in undici dimensioni. Ovvero se si studia la supergravità in uno spazio-tempo 11-dimensionale, si ottiene la supergravità tipo IIA, la quale attraverso la T-dualità può essere trasformata nella IIB. Ad ogni modo la supergravità 11-dimensionale non è di per sé consistente: ad esempio fornisce risultati paradossali ad alte energie, perciò richiede qualche forma di completamento. Sembra accettabile, allora, l'esistenza di qualche teoria quantistica, che lo stesso Witten ha chiamato appunto teoria M, in 11 dimensioni e che per basse energie dà gli stessi risultati della supergravità 11-dimensionale; essa deve essere relazionata attraverso riduzioni dimensionali ad una teoria di stringa in 10 dimensioni. Eseguendo queste operazioni su un cerchio si riproduce la superstringa tipo IIA, mentre applicandole ad un segmento si ricade nel caso della superstringa eterotica SO(32). Proprio per via dell'aggiunta di un'ulteriore dimensione, la teoria M comprende molto di più che le sole stringhe. Questa aggiunta permette l'esistenza di altri oggetti che vanno sotto il nome generico di p-brane, dove p sta ad indicare il numero di dimensioni proprie di ciascuna brana: perciò un oggetto 1-brana è una stringa e uno 2-brane è una membrana. Nella teoria delle superstringhe sono presenti oggetti di dimensioni ancora maggiori, sebbene il loro studio sia complicato a causa della loro natura non-perturbativa. L'inclusione di queste nuove entità non rende, però, sbagliati i lavori precedentemente svolti, che di loro non tenevano conto: infatti, questi oggetti multidimensionali sono molto più massicci delle normali stringhe e possono, per questo motivo, essere ignorati, come hanno fatto inconsapevolmente i ricercatori, quando si ha solo a che fare con stringhe. Le proprietà non perturbative fondamentali delle p-brane derivano da una loro classe speciale, chiamate p-brane di Dirichlet (abbreviato Dp-brane). Questa denominazione deriva dalle condizioni limite di Dirichlet, assegnate ai punti terminali delle stringhe aperte nelle superstringhe di tipo I. L'importanza di questi espedienti matematici si comprese poco dopo i lavori di Witten del 1995: fu Joseph Polchinski a scoprire che, in certe situazioni, particolari tipi di stringa non sarebbero stati in grado di muoversi in tutte le dimensioni a loro disposizione. Esse potevano essere immaginate come incapaci di staccarsi da certe regioni di spazio, sebbene perfettamente libere di muoversi in esse. Per stessa intuizione di Polchinski, queste parti di spazio potevano essere esattamente delle Dp-brane e i calcoli dimostrarono l'esattezza di quest'ipotesi. Un'ulteriore conferma giunge dal fatto che stringhe aperte di tipo I possono avere il punto terminale che soddisfa anche la condizione limite di Neumann. In tali condizioni il punto terminale delle stringhe è libero di muoversi, ma nessun "momento" può fluttuare dentro o fuori la parte terminale della stringa. La T-dualità presuppone l'esistenza di stringhe aperte con posizioni fissate nelle dimensioni, che non sono altro che trasformazioni di tipo T. Generalmente, nelle teorie di tipo II si possono immaginare stringhe aperte con specifiche posizioni del punto terminale in qualcuna delle varie dimensioni: da ciò si deduce che esse devono terminare su una superficie preferenziale. Apparentemente questo fatto sembrerebbe rompere l'invarianza relativistica della teoria, introducendo un paradosso. Anche la dissoluzione di questo paradosso è affidata al fatto che le stringhe terminano su un oggetto dinamico p-dimensionale cioè la Dp-brana. Ma non tutte le stringhe sono confinate su brane: l'esistenza di stringhe chiuse, riesce incredibilmente a spiegare anche la debolezza della gravità rispetto all'elettromagnetismo. Il problema viene risolto ponendo che di fatto esso non esiste: la gravità non è più debole dell'elettromagnetismo, ma semplicemente appare essere tale. Il motivo risiede proprio nelle stringhe chiuse: la particella elementare responsabile della forza gravitazionale, il gravitone, essendo corrispondente ad una stringa a loop, non è in alcun modo legato alla brana ed è per questo motivo che riesce a sfuggirle, facendo così sembrare meno intensa la forza di cui è mediatrice. L'importanza delle D-brane deriva dal fatto che esse permettono di studiarne le eccitazioni utilizzando la rinormalizzazione bidimensionale della teoria quantistica dei campi della stringa aperta all'interno della teoria del volume universale non-rinormalizzabile delle D-brane stesse. In questo modo diviene possibile calcolare i fenomeni non-perturbativi usando metodi che invece lo sono. Molte delle p-brane precedentemente identificate sono D-brane. Altre sono correlate alle D-brane dalle simmetrie duali, così che anch'esse possono essere ricondotte sotto il controllo matematico. Sono state trovate numerose utili applicazioni delle D-brane, la più notevole delle quali è lo studio dei buchi neri. Andrew Strominger e Cumrun Vafa hanno dimostrato che la tecnica delle D-brane può essere usata per conteggiare i microstati quantici associati alle classiche configurazioni dei buchi neri. Il primo più semplice caso esplorato sono stati i buchi neri carichi estremi statici in 5 dimensioni. Strominger e Vafa hanno documentato che per grandi valori delle cariche l'entropia S=N, dove N equivale al numero degli stati quantici in cui si può trovare il sistema, in accordo con le previsioni di Bekenstein-Hawking (1/4 dell'area dell'orizzonte degli eventi). Questo risultato è stato generalizzato ai buchi neri quadridimensionali così come a quelli vicini all'estremità (e correttamente irradiati) o rotanti, cosa che è un notevole successo. Non è ancora stato provato alcun fallimento della meccanica quantistica riguardo ai buchi neri. Sebbene non ancora completa e al contrario di molte altre ipotesi formulate sulla formazione dell'universo che sono ex nihilo, la teoria M presuppone che l'universo osservabile sia formato da solo quattro, delle undici dimensioni esistenti, che si siano espanse a dispetto delle altre; si ipotizza, in particolare, che il Big Bang non sia altro che una collisione di brane che abbia sviluppato sufficiente energia per formare questo universo, che in questo modo si troverebbe su una 3-brana. Così come è possibile l'esistenza di universi situati su altre brane vicine a quella dell'universo osservabile, in cui potrebbero anche esistere leggi fisiche diverse da quelle abituali, come diverso potrebbe essere il loro numero di dimensioni. La loro presenza sarebbe evidenziata attraverso la loro attrazione gravitazionale. Quando fu formulata, la teoria M era semplicemente pensata come una teoria che descrivesse un campo ad energia relativamente bassa, ovvero la supergravità ad undici dimensioni. Sebbene fosse proprio questo il legame che univa questa teoria fondamentale con la teoria delle stringhe, sembrava plausibile che esistesse anche un limite energetico superiore, al quale, coerentemente, corrispondesse un'enunciazione matematica, una formulazione che ritraesse il quadro di insieme dei comportamenti e delle interazioni che intercorrono tra questi oggetti mono o multidimensionali. Quello che già si possedeva era, infatti, una visione sì coerente, ma solo superficiale ed escludeva la trattazione degli elementi veramente fondamentali. Per analogia, è come considerare l'acqua come un fluido continuo ed incomprimibile, situazione sicuramente adatta su grande scala per avere a che fare con correnti e onde, ma inadeguata quando si tratta dell'evaporazione, ovvero di quei fenomeni a più alta energia, per cui è necessario lo studio dei comportamenti molecolari. Così, partendo proprio da questi presupposti, Tom Banks, Fischler, Shenker e Susskind (abbreviato BFSS) pensarono che la soluzione fosse una formulazione interamente matriciale della teoria. Dimostrarono che una teoria di nove matrici molto grandi che si evolvessero nel tempo poteva riprodurre la descrizione a basse energie della supergravità, cessando tuttavia di essere valida per energie più elevate; perciò, mentre la supergravità considera lo spazio-tempo un continuo, la teoria delle matrici predice che a piccole distanze smetta di essere valida la "geometria non-commutativa", qualcosa di molto simile al modo in cui la continuità dell'acqua si interrompe per cedere il posto alla descrizione molecolare.
Sotto: Galleria Immagini sulla M-Teoria
Mondo-brana
Nella teoria delle stringhe, la teoria del mondo-brana o cosmologia di brana (Brane Cosmology) è una teoria cosmologica formulata nell'ambito della M-teoria (la teoria che tenta di riunificare le 5 teorie delle stringhe). La teoria del mondo-brana, in contrapposizione alla teoria dell'inflazione riformulata in compatibilità con la teoria delle superstringhe, ipotizza che le dimensioni extra non siano spazi di Calabi-Yau microscopici, bensì dimensioni più estese rispetto alle tre dimensioni spaziali percepite quotidianamente. La teoria del mondo-brana ipotizza che l'Universo sia una 3-brana tridimensionale immersa in un iperspazio ad 11 dimensioni (le brane sono le cosiddette "membrane" n-dimensionali ipotizzate dalla M-teoria). Il tessuto spazio-temporale, in questo contesto, è costituito dalla superficie tridimensionale dell'Universo. Secondo questa teoria, la materia presente nell'Universo non può "uscire" da esso per entrare nell'iperspazio, poiché le superstringhe aperte tendono ad avere entrambe le estremità collegate ad una D-brana. Come il nostro Universo, possono esistere un'infinità di altri Universi paralleli immersi nell'iperspazio, Universi costituiti da brane n-dimensionali. Queste brane fluttuerebbero in un iperspazio detto anche "bulk". Secondo la teoria-M, tutte le superstringhe aperte tendono ad avere entrambe le estremità collegate ad una d-brana. Così, esse possono essere presenti solo in un particolare Universo, e non possono fluttuare liberamente nell'iperspazio: conseguentemente, sia le particelle materiali che le particelle mediatrici delle forze (eccetto una) non possono uscire dal nostro Universo. Secondo la teoria-M, tuttavia, i gravitoni sono costituiti, a differenza di tutte le altre particelle, da stringhe chiuse ad anello. Ciò renderebbe la gravità una forza molto particolare, poiché consentirebbe la sua trasmissione da un Universo all'altro tramite l'iperspazio. La materia presente in un Universo, in altre parole, potrebbe interagire attraverso la gravità con la materia presente in un altro Universo. Questa ipotesi spiegherebbe così la bassa intensità dell'interazione gravitazionale: parte dei gravitoni virtuali emessi da una particella massiva in un particolare Universo fluttuerebbero per l'iperspazio interagendo con la materia di Universi differenti. Ciò potrebbe fornire una spiegazione al fenomeno della cosiddetta materia oscura. Il modello cosmologico più accreditato, nel contesto della teoria dei mondi-brana, è per ora il modello ciclico ekpirotico, sviluppato dai fisici Paul Steinhardt (che poi ha abbandonato la teoria di multiverso) e Neil Turok. Secondo questo modello, il nostro Universo, una brana tridimensionale, è in continua collisione con un Universo parallelo separato da una brevissima distanza nelle dimensioni extra. Con un periodo di qualche migliaio di miliardi di anni, i due Universi collidono in un Big Splat. Al momento della collisione, in ciascuno dei due Universi si libera una grande quantità di radiazione, che dovrebbe essere pari a quella originata dalle oscillazioni dell'inflatone secondo la teoria dell'inflazione. A causa di fluttuazioni quantistiche, al momento del Big Splat alcune parti dei due Universi colliderebbero in anticipo rispetto ad altre, formando una quantità non uniforme di radiazione (la stessa non-uniformità viene spiegata nel modello inflazionario a causa di fluttuazioni quantistiche nel campo dell'inflatone). Questo modello, apparentemente assurdo, ha solide basi nella teoria-M, secondo la quale la settima dimensione dovrebbe trovarsi compressa fra due brane: nel modello ciclico, i due Universi in continua collisione sono separati proprio dalla settima dimensione. Il modello ciclico, per ora la principale teoria cosmologica dopo l'inflazione, può essere sottoposto a sperimentazioni in grado di dimostrarne la validità. In primo luogo, il modello ciclico si basa interamente sulla teoria-M e, più in generale, sulla teoria delle superstringhe: se quest'ultima teoria venisse invalidata dai dati sperimentali, il modello ciclico e la stessa teoria dei mondi-brana risulterebbero false. In secondo luogo, un esperimento più diretto per confermare il modello ciclico, ed invalidare l'inflazione, potrebbe essere effettuato da sonde in grado di rivelare le onde gravitazionali: secondo il modello inflazionario, infatti, le oscillazioni dell'inflatone hanno portato a distorsioni dello spazio-tempo (delle onde gravitazionali) percepibili anche nell'Universo attuale, mentre nel modello ciclico il Big Splat non origina onde gravitazionali. Una verifica del modello ciclico che ne confermi la validità potrebbe rappresentare una prova sperimentale a favore della stessa teoria delle superstringhe.
Sotto: il CERN, dove vengono effettuati interessanti esperimenti sugli Universi paralleli...
Big Splat
Il modello di universo ecpirotico, in originale ekpyrotic universe o ekpyrotic scenario (dal termine filosofico "ecpirosi", in greco antico «[uscito] fuori dal fuoco», nel significato di "conflagrazione universale", "fine del mondo in un grande incendio cosmico" da cui rinasce un nuovo mondo), chiamato anche modello di Steinhardt-Turok (dal nome dei due ideatori) o Big Splat ("grande schiacciamento") è un modello cosmologico che è stato proposto dai fisici teorici Paul Steinhardt e Neil Turok, nell'ambito della teoria delle stringhe, in particolare del mondo-brana e del multiverso (teoria M), e delle teorie dell'universo ciclico. Essi si basarono sulle idee di Justin Khoury, Gabriele Veneziano (autore della cosmologia di stringa) e Burt Ovrut. L'evento della collisione gravitazionale tra brane detta Big Splat è vista come un fenomeno antecedente il Big Bang, e un passaggio fondamentale nella formazione del nostro universo, come previsto dal modello ciclico, modello cosmologico che si contende il primato come tra i più accreditati assieme al modello inflazionario, con cui tuttavia non è in netto contrasto (non prevedendo però le onde gravitazionali), in quanto lo scontro delle brane spiega cosa avvenne prima dell'ultimo Big Bang, non dopo. La gravità della brana vicina è percepita come materia oscura. L'enorme conflagrazione produrrebbe calore ed energia altissimi, tali da generare un'esplosione gigantesca e dare vita ad un intero e nuovo universo in espansione accelerata; questo aumento di velocità sarebbe effetto di una costante cosmologica (energia oscura, residuo della collisione gravitazionale), per terminare, e così all'infinito, in una nuova collisione e un nuovo Big Bang. A differenza dell'inflazione cosmica, però, il modello ecpirotico elimina completamente la singolarità ed è considerato parzialmente una teoria di cosmologia non standard, anche se rispetta comunque i parametri del modello Lambda-CDM e di quello del Big Bang, non rientrandovi completamente. Il punto fondamentale di questa teoria è considerare il Big Bang come un momento importante nella formazione del nostro universo, ma non come momento iniziale e unico. Secondo i teorici del Big Splat, prima della grande esplosione vi sarebbero stati due "protouniversi" separati, entrambi perfettamente piatti secondo le leggi della geometria euclidea ed estesi, come il nostro, su quattro dimensioni (tre spaziali e una temporale). Essi sono piatti, in quanto questa è la più accreditata forma dell'universo. In questi due universi non vi sarebbe stata materia come oggi la intendiamo, bensì onde gravitazionali. Queste brane fluttuerebbero in un iperspazio detto anche "bulk". Per far sì che questo modello funzioni, è necessario considerare le particelle non più come unità puntiformi adimensionali, con i problemi che ne conseguono e che sono indicati dalla meccanica quantistica, ma come stringhe ad una dimensione. Queste stringhe introducono l'esistenza di ulteriori dimensioni (11 in totale) e una in particolare, la settima di quelle extra (oltre le prime 4), che dividerebbe i due universi. l Big Splat si sarebbe verificato quando i due universi preesistenti avrebbero avuto una collisione gravitazionale, o meglio delle collisioni in più parti (a causa di alcune fluttuazioni quantistiche casuali), arrivando così, in uno dei due che sarebbe poi diventato il nostro universo, a causare il Big Bang. Al momento del Big Splat alcune parti dei due Universi colliderebbero infatti in anticipo rispetto ad altre, formando una quantità non uniforme di radiazione (la stessa non-uniformità viene spiegata nel modello inflazionario a causa di fluttuazioni quantistiche nel campo dell'inflatone). Questo modello, apparentemente assurdo, ha solide basi nella teoria M, secondo la quale la settima dimensione dovrebbe trovarsi compressa fra due brane: nel modello ciclico, i due universi in continua collisione sono separati proprio dalla settima dimensione. L'altro protouniverso avrebbe continuato ad esistere indipendentemente o collimare anch'esso in un analogo Big Bang. Il nostro universo, una brana tridimensionale (una delle due o una terza brana invisibile di nuova formazione), è quindi in continua collisione con un universo parallelo separato da una brevissima distanza nelle dimensioni extra. Con un periodo di qualche migliaio di miliardi di anni (circa 1 bilione di anni, ossia 1000000000000 o 1012), i due universi collidono in un Big Splat. Al momento della collisione, in ciascuno dei due Universi si libera una grande quantità di radiazione, che dovrebbe essere pari a quella originata dalle oscillazioni dell'inflatone secondo la teoria dell'inflazione. Turok e Steinhardt hanno fatto anche riferimento al racconto di Isaac Asimov L'ultima domanda per spiegare a livello divulgativo la loro teoria.
«Per un altro intervallo senza tempo, AC pensò come potesse al meglio approdare a una conclusione. Organizzò con cura il programma. AC metteva insieme con cognizione di causa tutto ciò che un tempo era stato un Universo e ponderava ciò che ora era un Caos. Un passo dopo l'altro, una soluzione ci dev'essere. Ed ecco che AC disse: «Sia fatta la luce!» E la luce fu fatta.»
Nella teoria del mondo-brana e dell'universo ecpirotico, la materia oscura non è altro che la forza di gravità di un'altra brana e della materia ordinaria da essa contenuta, vicina ma invisibile, costituita da stringhe; alcune di queste stringhe sono visibili come particelle e collegano le brane, e ad esse è legata anche la gravità. L'energia oscura è invece un'energia repulsiva prevalente nei proto-universi come una sorta di "gravità extra", che nell'universo è utile a svuotare ogni brana dall'universo prodotto su di essa, rendendo la materia dispersa e preparando la nuova collisione, e rendendole parallele; inoltre essa funge da stabilizzatore: in questo modo una fluttuazione quantistica più energica provocata dal Big Splat/Big Crunch delle brane non allontanerebbe troppo le brane stesse e gli universi che contengono. Le brane possono così di nuovo incontrarsi sotto la spinta della normale forza di gravità, senza allungare troppo il ciclo cosmico. L'energia oscura inizialmente deriva dalle precedenti collisioni, rappresentando un residuo dell'attrazione gravitazionale e un'energia del vuoto, non una forza a sé stante. Anche per effetto della gravità dell'altra brana, essa aumenta l'accelerazione di espansione quando le brane lentamente si avvicinano, esaurita la spinta della collisione (costante cosmologica). Materia oscura ed energia oscura quindi hanno una comune origine, nella gravità del mondo-brana invisibile. Tramite una sorta di selezione naturale cosmologica nello spazio, nella variante a multiverso (teoria M), oppure una selezione nel tempo, il nostro universo si sarebbe evoluto e sarebbe sopravvissuto e ospitale per la vita dei suoi componenti, con un perfetto equilibrio delle forze, come la gravità. Alcuni criticano il Big Splat ed il modello ciclico in quanto ritenuto una versione, seppur particolare, della teoria del multiverso, sviluppatasi tramite varie interpretazioni dal dopoguerra in poi, e una derivazione della teoria delle stringhe, ritenuta priva di falsificabilità e non scientifica. Alcuni criticano il Big Splat ed il modello ciclico in quanto ritenuto una versione, seppur particolare, della teoria del multiverso, sviluppatasi tramite varie interpretazioni dal dopoguerra in poi, e una derivazione della teoria delle stringhe, ritenuta priva di falsificabilità e non scientifica. Il modello ciclico può essere sottoposto a sperimentazioni in grado di dimostrarne la validità. In primo luogo, il modello ciclico si basa interamente sulla teoria M e, più in generale, sulla teoria delle superstringhe: se quest'ultima teoria venisse invalidata dai dati sperimentali, il modello ciclico e la stessa teoria dei mondi-brana risulterebbero false. In secondo luogo, un esperimento più diretto per confermare il modello inflazionario, ed invalidare la teoria dei mondi-brana, potrebbe essere effettuato da sonde in grado di rivelare le onde gravitazionali: secondo il modello inflazionario, infatti, le oscillazioni dell'inflatone hanno portato a distorsioni dello spazio-tempo (delle onde gravitazionali) percepibili anche nell'Universo attuale, mentre nel modello ciclico il Big Splat non origina onde gravitazionali. Una verifica del modello ciclico che ne confermi la validità potrebbe rappresentare una prova sperimentale a favore della stessa teoria delle superstringhe. In riferimento ai dati di BICEP2 del marzo 2014 che confermerebbero la veridicità della teoria inflazionaria (cosa che ha fatto abbandonare la sua teoria a Steinhardt, che è tornato a sostenere l'inflazione, salvo poi cambiare nuovamente idea dopo poco), Michio Kaku, esperto di teoria M, afferma che il Big Splat non contraddice l'inflazione o il Big Bang, bensì vuole dare una spiegazione del perché siano avvenuti, occupandosi di ciò che avvenne prima della nascita dell'attuale universo. Non essendo rilevate, a un'attenta analisi dei dati, le onde gravitazionali, il modello resta ancora fattibile e verificabile. Comunque, il multiverso dell'inflazione eterna, specie la cosiddetta teoria delle bolle, ha somiglianze con quello delle brane, che talvolta sono state descritte come bolle di forma particolare, ma in esso il nostro universo non è ciclico. In primo luogo il modello ciclico ecpirotico potrebbe essere dichiarato veritiero se:
- si verificasse l'osservazione di una stringa (molto difficile a causa della dimensione)
- si verificasse una predizione della teoria delle stringhe o delle superstringhe
Anche esperimenti astronomici potrebbero fornire validità a queste teorie. Affermando che la struttura fondamentale della natura è fatta di stringhe e non di punti, la teoria delle stringhe stabilisce la scala minima con cui possiamo considerare il mondo (la lunghezza delle stringhe). Per provare a risolvere questa dicotomia, un gruppo di fisici della Towson University ha sostenuto che, calcolando le posizioni dei pianeti del sistema solare, i ricercatori possano trovare nuovi limiti oltre i quali è possibile misurare gli effetti della teoria delle stringhe, trovando allo stesso tempo prove della violazione del principio di equivalenza einsteiniano. Queste prove al momento sono state solo ipotizzate, ma dovrebbero comprendere la leggera violazione di tre leggi della fisica astronomica: la terza legge di Keplero, il principio dei punti di Lagrange e la polarizzazione orbitale, anche conosciuta come effetto Nordtvedt, una delle prove della relatività generale (assieme alle contestate onde gravitazionali).